Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 222, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372782

RESUMEN

Pseudomonas aeruginosa is a common opportunistic pathogen with growing resistance and presents heightened treatment challenges. Quorum sensing (QS) is a cell-to-cell communication system that contributes to the production of a variety of virulence factors and is also related to biofilm formation of P. aeruginosa. Compared to traditional antibiotics which kill bacteria directly, the anti-virulence strategy by targeting QS is a promising strategy for combating pseudomonal infections. In this study, the QS inhibition potential of the compounds derived from the Traditional Chinese Medicines was evaluated by using in silico, in vitro, and in vivo analyses. The results showed that psoralen, a natural furocoumarin compound derived from Psoralea corylifolia L., was capable of simultaneously inhibiting the three main QS regulators, LasR, RhlR, and PqsR of P. aeruginosa. Psoralen had no bactericidal activity but could widely inhibit the production of extracellular proteases, pyocyanin, and biofilm, and the cell motilities of the model and clinical P. aeruginosa strains. RNA-sequencing and quantitative PCR analyses further demonstrated that a majority of QS-activated genes in P. aeruginosa were suppressed by psoralen. The supplementation of psoralen could protect Caenorhabditis elegans from P. aeruginosa challenge, especially for the hypervirulent strain PA14. Moreover, psoralen showed synergistic antibacterial effects with polymyxin B, levofloxacin, and kanamycin. In conclusions, this study identifies the anti-QS and antibiofilm effects of psoralen against P. aeruginosa strains and sheds light on the discovery of anti-pseudomonal drugs among Traditional Chinese Medicines. KEY POINTS: • Psoralen derived from Psoralea corylifolia L. inhibits the virulence-related phenotypes of P. aeruginosa. • Psoralen simultaneously targets the three core regulators of P. aeruginosa QS system and inhibits the expression of a large part of downstream genes. • Psoralen protects C. elegans from P. aeruginosa challenge and enhances the susceptibility of P. aeruginosa to antibiotics.


Asunto(s)
Fabaceae , Furocumarinas , Infecciones por Pseudomonas , Animales , Pseudomonas aeruginosa/genética , Ficusina/farmacología , Percepción de Quorum , Virulencia , Caenorhabditis elegans , Infecciones por Pseudomonas/tratamiento farmacológico , Furocumarinas/farmacología , Antibacterianos/farmacología
2.
Medicine (Baltimore) ; 102(37): e35214, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713831

RESUMEN

BACKGROUND: Huangkui Capsule is a single herbal concoction prepared from the flower of Abelmoschus manihot, which is used to treat idiopathic membranous nephropathy (IMN), a frequent pathologically damaging kidney condition. It has been widely utilized to treat a variety of renal disorders, including IMN, in clinical practice. However, the active compounds and mechanism of action underlying the anti-IMN effects of Huangkui Capsule remain unclear. In this study, we aimed to predict the potential active compounds and molecular targets of Huangkui Capsule for the treatment of IMN. METHODS: The possible active components of Huangkui were located using the SymMap v2 database. The targets of these drugs were predicted using Swiss Target Prediction, while IMN-related genes with association scores under 5 were gathered from the GeneCards and DisGeNET databases. The common targets of the disease and the components were determined using VENNY 2.1. Using Cytoscape 3.8.0, a drug-disease network diagram was created. Molecular docking was carried out with Pymol, AutoDock Tools, and AutoDock Vina. RESULTS: With 1260 IMN-related illness genes gathered from GeneCards and DisGeNET databases, we were able to identify 5 potentially active chemicals and their 169 target proteins in Huangkui. Based on degree value, the top 6 targets for Huangkui treatment of IMN were chosen, including AKT, MAPK3, PPARG, MMP9, ESR1, and KDR. CONCLUSION: This work theoretically explains the mechanism of action of Huangkui Capsule in treating IMN and offers a foundation for using Huangkui Capsule in treating IMN in clinical settings. The findings require additional experimental validation.


Asunto(s)
Abelmoschus , Glomerulonefritis Membranosa , Humanos , Farmacología en Red , Glomerulonefritis Membranosa/tratamiento farmacológico , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA