Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37622884

RESUMEN

The incorporation of nanomaterials (NMs) into biosensing schemes is a well-established strategy for gaining signal enhancement. With electrochemical biosensors, the enhanced performance achieved from using NMs is often attributed to the specific physical properties of the chosen nanocomponents, such as their high electronic conductivity, size-dependent functionality, and/or higher effective surface-to-volume ratios. First generation amperometric biosensing schemes, typically utilizing NMs in conjunction with immobilized enzyme and semi-permeable membranes, can possess complex sensing mechanisms that are difficult to study and challenging to understand beyond the observable signal enhancement. This study shows the use of an enzymatic reaction between xanthine (XAN) and xanthine oxidase (XOx), involving multiple electroactive species, as an electrochemical redox probe tool for ascertaining mechanistic information at and within the modified electrodes used as biosensors. Redox probing using components of this enzymatic reaction are demonstrated on two oft-employed biosensing approaches and commonly used NMs for modified electrodes: gold nanoparticle doped films and carbon nanotube interfaces. In both situations, the XAN metabolism voltammetry allows for a greater understanding of the functionality of the semipermeable membranes, the role of the NMs, and how the interplay between the two components creates signal enhancement.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro , Conductividad Eléctrica , Electrodos
2.
Gels ; 9(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37367108

RESUMEN

First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease diagnosis) and industrial (meat freshness) applications. Voltammetry and amperometry were used to characterize and optimize the functional layers of the biosensor design including a xerogel with and without embedded xanthine oxidase enzyme (XOx) and an outer, semi-permeable blended polyurethane (PU) layer. Specifically, the porosity/hydrophobicity of xerogels formed from silane precursors and different compositions of PU were examined for their impact on the XAN biosensing mechanism. Doping the xerogel layer with different alkanethiol protected Au-NPs was demonstrated as an effective means for enhancing biosensor performance including improved sensitivity, linear range, and response time, as well as stabilizing XAN sensitivity and discrimination against common interferent species (selectivity) over time-all attributes matching or exceeding most other reported XAN sensors. Part of the study focuses on deconvoluting the amperometric signal generated by the biosensor and determining the contribution from all of the possible electroactive species involved in natural purine metabolism (e.g., uric acid, hypoxanthine) as an important part of designing XAN sensors (schemes amenable to miniaturization, portability, or low production cost). Effective XAN sensors remain relevant as potential tools for both early diagnosis of diseases as well as for industrial food monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA