RESUMEN
Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.
Asunto(s)
Plaguicidas , Animales , Argentina , Productos Agrícolas/metabolismo , Ecosistema , Europa (Continente) , HumanosRESUMEN
The spread of multi-drug resistance and the slow pace at which antibiotics come onto the market are undermining our ability to treat human infections, leading to high mortality rates. Aiming to overcome this global crisis, antimicrobial peptides are considered promising alternatives to counter bacterial infections with multi-drug resistant bacteria. The cathelicidins comprise a well-studied class of AMPs whose members have been used as model molecules for sequence modifications, aiming at enhanced biological activities and stability, along with reduced toxic effects on mammalian cells. Here, we describe the antimicrobial activities, modes of action and structural characterization of two novel cathelicidin-like peptides, named BotrAMP14 and CrotAMP14, which were re-designed from snake batroxicidin and crotalicidin, respectively. BotrAMP14 and CrotAMP14 showed broad-spectrum antibacterial activity against susceptible microorganisms and clinical isolates with minimal inhibitory concentrations ranging from 2-35.1 µM. Moreover, both peptides had low cytotoxicity against Caco-2 cells in vitro. In addition, in vivo toxicity against Galleria mellonella moth larvae revealed that both peptides led to>76% larval survival after 144 h. Microscopy studies suggest that BotrAMP14 and CrotAMP14 destabilize E. coli membranes. Furthermore, circular dichroism and molecular dynamics simulations indicate that, in a membrane-like environment, both peptides adopt α-helical structures that interact with bilayer phospholipids through hydrogen bonds and electrostatic interaction. Thus, we concluded that BotrAMP14 and CrotAMP14 are helical membrane active peptides, with similar antibacterial properties but lower cytotoxicity than the larger parent peptides batroxicidin and crotalicidin, having advantages for drug development strategies.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Catelicidinas/química , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , Enlace de Hidrógeno , Larva/efectos de los fármacos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Conformación Proteica en Hélice alfa , Electricidad EstáticaRESUMEN
In order to study how acidic pro-peptides inhibit the antimicrobial activity of antimicrobial peptides, we introduce a simple model system, consisting of a 19 amino-acid long antimicrobial peptide, and an N-terminally attached, 10 amino-acid long acidic model pro-peptide. The antimicrobial peptide is a fragment of the crotalicidin peptide, a member of the cathelidin family, from rattlesnake venom. The model pro-peptide is a deca (glutamic acid). Attachment of the model pro-peptide only leads to a moderately large reduction in the binding to- and induced leakage of model liposomes, while the antimicrobial activity of the crotalicidin fragment is completely inhibited by attaching the model pro-peptide. Attaching the pro-peptide induces a conformational change to a more helical conformation, while there are no signs of intra- or intermolecular peptide complexation. We conclude that inhibition of antimicrobial activity by the model pro-peptide might be related to a conformational change induced by the pro-peptide domain, and that additional effects beyond induced changes in membrane activity must also be involved.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Venenos de Crotálidos/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos/genética , Animales , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Venenos de Crotálidos/genética , Crotalus/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Ácido Glutámico/química , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Liposomas/antagonistas & inhibidores , Liposomas/química , Membranas/efectos de los fármacos , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Conformación Proteica/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidadRESUMEN
Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen ß-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen.