Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eat Weight Disord ; 27(4): 1505-1512, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34478125

RESUMEN

AIM: The aim of this study was to analyze the association and susceptibility of Single Nucleotide Polymorphisms (SNPs) in the DRD2 and BDNF genes with BED in patients with weight regain in the postoperative period of bariatric surgery. METHODS: One hundred and seventy-seven individuals who underwent bariatric surgery with weight regain were evaluated and divided into two groups according to the BED diagnostic. The individuals were submitted to an anthropometric evaluation, analysis of the presence of BED using a validated questionnaire, and blood collection for genotyping of the polymorphisms rs6265 (BDNF) and rs1800497 (DRD2) by real-time polymerase chain reaction (RT-PCR). RESULTS: The presence of wild-type alleles for rs1800497 (CC) and rs6265 (GG) was more frequent in patients without BED. Nevertheless, the presence of one or two variant alleles for rs1800497 (CT + TT) and rs6265 (GA + AA) was more frequent in patients with BED. The combination of the two studied SNPs prevailed in patients with BED. CONCLUSIONS: The presence of allele frequency of rs1800497 SNP in the DRD2 gene and rs6265 SNP in the BDNF gene, isolated and/or combined, indicated an additional risk for the development of BED in patients with obesity, especially in the context of weight regain. LEVEL OF EVIDENCE: III (evidence obtained from the case-control analytic study).


Asunto(s)
Cirugía Bariátrica , Trastorno por Atracón , Trastorno por Atracón/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Polimorfismo de Nucleótido Simple , Receptores de Dopamina D2/genética , Aumento de Peso/genética
2.
Front Nutr ; 8: 628759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722599

RESUMEN

Matrix metalloproteinases (MMP) and their endogenous inhibitor, the tissue inhibitor of metalloproteinases (TIMP), are expressed in many different cell types and play an important role in physiologic and pathological degradation of extracellular matrix (ECM). Starting from these observations and considering the activation state of peripheral blood mononuclear cells (PBMCs) in obesity, we investigated the gene expression of metalloproteinases before and after Roux-en-Y gastric bypass (RYBG). The study was performed in the Ribeirão Preto Medical School University Hospital. Seventy-three women were divided into a study group (SG), composed of 53 individuals with severe obesity before and after 6 months of RYGB, and a control group (CG), composed of 20 normal-weight individuals. Anthropometric and body composition data were collected, and peripheral blood for ribonucleic acid (RNA) extraction. The biological samples were submitted to a quantitative real-time polymerase chain reaction to evaluate the expression of MMP2 and TIMP2 genes. Alterations in weight loss, body mass index (BMI), and fat mass (FM) were observed after 6 months of RYGB (p < 0.05). A reduction of gene expression of TIMP2 was observed after 6 months of RYGB, contributing positively to the weight loss (R 2 = 0.33 p = 0.04). The enrichment analyses highlighted the interaction between TIMP2 and MMP2 genes and the molecular pathways involving the ECM remodeling in the obesity condition. RYGB contributes significantly to weight loss, improved BMI, reduced FM, and reduced TIMP2 expression in PBMCs, which might contribute to the ECM remodeling in the obesity and could be useful as a circulating biomarker.

3.
Obes Surg ; 31(6): 2599-2606, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735395

RESUMEN

BACKGROUND: Telomeres are structures located at the ends of chromosomes associated with a protein complex, known as the shelterin complex. In individuals with obesity, excess adipose tissue plays a key role in inducing a chronic and systemic inflammatory state, which can cause TL shortening. In this context, bariatric surgery is one of the most effective treatment modalities in improving metabolic control. AIM: Therefore, the present study aimed to evaluate how a short postoperative period of gastric bypass affects TL and expression of POT1, TRF1 and TRF2 genes. METHODS: Forty-eight women submitted to RYGB were evaluated before and after 6 months of the surgical procedure. Anthropometric measures of body weight and height (BMI), abdominal circumference (AC), body composition, food intake and blood collection for biochemical evaluation, TL analysis (DNA), and gene expression (RNA) were collected at each moment. RESULTS: There was a reduction of weight, BMI, AC, FM and FFM as well as of glycemia, total cholesterol, LDL-cholesterol, and triglycerides after gastric bypass. No difference in energy intake and macronutrients consumption was observed. There was no significant change in TL, but there was a significant increase of POT1 and TRF1 gene expression after surgery, while TRF2 expression did not change. CONCLUSIONS: Despite bariatric surgery is not capable of increasing telomere length in a short-term period, no reduction is observed; additionally, we found a correlation between serum triglycerides concentration and TL. The increase of POT1 and TRF1 gene expression may explain the maintenance of the TL after 6 months postoperative period.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Femenino , Expresión Génica , Humanos , Obesidad Mórbida/cirugía , Estudios Prospectivos , Telómero/genética
4.
Diabetol Metab Syndr ; 13(1): 19, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593418

RESUMEN

BACKGROUND: Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB), is the most effective and durable treatment option for severe obesity. The mechanisms involving adipose tissue may be important to explain the effects of surgery. METHODS: We aimed to identify the genetic signatures of adipose tissue in patients undergoing RYGB. We evaluated 13 obese, non-diabetic patients (mean age 37 years, 100% women, Body mass index (BMI) 42.2 kg/m2) one day before surgery, 3 and 6 months (M) after RYGB. RESULTS: Analysis of gene expression in adipose tissue collected at surgery compared with samples collected at 3 M and 6 M Post-RYGB showed that interleukins [Interleukin 6, Tumor necrosis factor-α (TNF-α), and Monocyte chemoattractant protein-1(MCP1)] and endoplasmic reticulum stress (ERS) genes [Eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) and Calreticulin (CALR)] decreased during the follow-up (P ≤ 0.01 for all). Otherwise, genes involved in energy homeostasis [Adiponectin and AMP-activated protein kinase (AMPK)], cellular response to oxidative stress [Sirtuin 1, Sirtuin 3, and Nuclear factor erythroid 2-related factor 2 (NRF2)], mitochondrial biogenesis [Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)] and amino acids metabolism [General control nonderepressible 2 (GCN2)] increased from baseline to all other time points evaluated (P ≤ 0.01 for all). Also, expression of Peroxisome proliferator-activated receptor gamma (PPARϒ) (adipogenesis regulation) was significantly decreased after RYGB (P < 0.05). Additionally, we observed that PGC1α, SIRT1 and AMPK strongly correlated to BMI at 3 M (P ≤ 0.01 for all), as well as ADIPOQ and SIRT1 to BMI at 6 M (P ≤ 0.01 for all). CONCLUSIONS: Our findings demonstrate that weight loss is associated with amelioration of inflammation and ERS and increased protection against oxidative stress in adipose tissue. These observations are strongly correlated with a decrease in BMI and essential genes that control cellular energy homeostasis, suggesting an adaptive process on a gene expression level during the caloric restriction and weight loss period after RYGB. Trial registration CAAE: 73,585,317.0.0000.5440.

5.
Nutrition ; 66: 115-121, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31255876

RESUMEN

Telomeres are structures located at the ends of chromosomes associated with proteins, from the shelterin complex, which are responsible for the protection and preservation of the genetic material. The telomere length (TL) progressively decreases with each cell division, and recent evidence suggests that lifestyle can lead to telomere shortening. In individuals with obesity, excess adipose tissue plays a key role in inducing a chronic and systemic inflammatory state, which can cause TL shortening. Thus, the aim of the present review was to show the relationship between obesity and TL in addition to the possible risk factors for its shortening and how the different strategies for weight loss can modulate TL. As the crucial result, we can consider the association between TL and weight loss, and adiposity changes after different interventions, showing that TL may be used as a biomarker of responses to obesity treatment.


Asunto(s)
Estado Nutricional , Obesidad/terapia , Acortamiento del Telómero , Pérdida de Peso , Humanos , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA