Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1126896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032878

RESUMEN

Mastitis is one of the most prevalent and economically important diseases of dairy animals. The disease is caused by ascending bacterial infection through the teat canal. Among the most common mastitis-causing bacteria are Gram-negative coliforms, Gram-positive streptococci and staphylococci, and mycoplasma. The most prominent cellular hallmark of acute mammary infection is a massive recruitment of blood neutrophils into the tubular and alveolar milk spaces. The complex biological processes of leukocyte recruitment, activation, adhesion, and migration in the mammary gland remain largely elusive to date. While field research of mastitis in dairy animals contributed a lot to the development of mitigation, control, and even eradication programs, little progress was made toward understanding the molecular mechanisms underlying the pathogenesis of the disease. We report here experimental mastitis model systems in lactating mice challenged with field strains of common udder pathogens in dairy cows. We used these model systems to apply recently developed multiplex gene expression technology (Nanostring nCounter), which enabled us to study the expression of over 700 immune genes. Our analysis revealed a core of 100 genes that are similarly regulated and functionally or physically interacting in E. coli, M. bovis, and Strep uberis murine mastitis. Common significantly enriched gene sets include TNFɑ signaling via NFkB, Interferon gamma and alpha response, and IL6-JAK-STAT3 signaling. In addition, we show a significantly enriched expression of genes associated with neutrophil extracellular traps (NET) in glands challenged by the three pathogens. Ligand-receptor analysis revealed interactions shared by the three pathogens, including the interaction of the cytokines IL1ß, IL1ɑ, and TNFɑ with their receptors, and proteins involved in immune cell recruitment such as complement C3 and ICAM1 (with CD11b), chemokines CCL3 and CCL4 (with CCR1), and CSF3 (with CSF3R). Taken together, our results show that mammary infection with E. coli, M. bovis, and Strep uberis culminated in the activation of a conserved core of immune genes and pathways including NET formation.

2.
Sci Rep ; 9(1): 16093, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695123

RESUMEN

Food-animal welfare is a major ethical and social concern. Pork is the most consumed meat worldwide, with over a billion pigs slaughtered annually. Most of these pigs routinely undergo painful surgical procedures (surgical castration, tail docking, teeth clipping), which farmers often reluctant to avoid, claiming it would increase cost and reduce production efficiency. Herein, this study indicates that these procedures compromise pigs' health and condition. Replacing surgical castration with immunocastration, avoiding tail docking and teeth clipping, and providing environmental enrichment, resulted in significant increase in weight gain, lowered risks for injuries and death, and reduced saliva and hair cortisol, both biomarkers for stress. Testosterone and DHEA analyses confirmed that immunocastration was an effective alternative to surgical castration. Economic models for the entire US swine market revealed that following across-the-board acceptance of this management, pork meat price is expected to drop, while the total annual social welfare (combined consumer and producer surplus) is expected to increase by $US 1.48 to 1.92 billion. In conclusion, sustainable swine farming management can be beneficial for both animals and farmers. Applying such welfare-friendly management is expected to reduce stress, enhance piglet/pig welfare and production, and improve the economics of swine operations in the global agro-food system.


Asunto(s)
Mataderos/economía , Crianza de Animales Domésticos/economía , Bienestar del Animal/economía , Carne/economía , Porcinos/fisiología , Crianza de Animales Domésticos/métodos , Animales , Femenino , Hidrocortisona/metabolismo , Masculino , Carne/análisis , Modelos Económicos , Estrés Fisiológico , Testosterona/metabolismo
3.
FASEB J ; 33(8): 9334-9349, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31120771

RESUMEN

Methyl-donor deficiency is a risk factor for neurodegenerative diseases. Dietary deficiency of the methyl-donors methionine and choline [methionine-choline-deficient (MCD) diet] is a well-established model of nonalcoholic steatohepatitis (NASH), yet brain metabolism has not been studied in this model. We hypothesized that supplemental betaine would protect both the liver and brain in this model and that any benefit to the brain would be due to improved liver metabolism because betaine is a methyl-donor in liver methylation but is not metabolically active in the brain. We fed male Sprague-Dawley rats a control diet, MCD diet, or betaine-supplemented MCD (MCD+B) diet for 8 wk and collected blood and tissue. As expected, betaine prevented MCD diet-induced NASH. However, contrary to our prediction, it did not appear to do so by stimulating methylation; the MCD+B diet worsened hyperhomocysteinemia and depressed liver methylation potential 8-fold compared with the MCD diet. Instead, it significantly increased the expression of genes involved in ß-oxidation: fibroblast growth factor 21 and peroxisome proliferator-activated receptor α. In contrast to that of the liver, brain methylation potential was unaffected by diet. Nevertheless, several phospholipid (PL) subclasses involved in stabilizing brain membranes were decreased by the MCD diet, and these improved modestly with betaine. The protective effect of betaine is likely due to the stimulation of ß-oxidation in liver and the effects on PL metabolism in brain.-Abu Ahmad, N., Raizman, M., Weizmann, N., Wasek, B., Arning, E., Bottiglieri, T., Tirosh, O., Troen, A. M. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats.


Asunto(s)
Betaína/uso terapéutico , Deficiencia de Colina/tratamiento farmacológico , Deficiencia de Colina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Metionina/deficiencia , Metionina/metabolismo , Fosfolípidos/metabolismo , Animales , Western Blotting , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley
4.
Thyroid ; 28(8): 1042-1051, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29855255

RESUMEN

BACKGROUND: Milk is a major source of iodine in human nutrition. Because both iodine content and the consumption of milk and dairy vary widely over time and populations, their contribution to iodine intake must be evaluated regularly. A recent national iodine survey found Israel's population to be mildly iodine deficient, possibly due to unmonitored changes in the food content of dietary iodine. Accounting for dairy iodine content can help guide efforts to prevent iodine deficiency. OBJECTIVES: This study aimed to determine the iodine concentration of dairy products typically consumed in the Israeli diet, and to estimate iodine intake from dairy products among Israeli adults. METHODS: Iodine was analyzed in 33 selected dairy products that account for 89% of the total population's dairy intake according to the "MABAT" Israeli National Health and Nutrition survey. Based on these data, the distribution of iodine intake from milk, dairy, and dairy-based foods in the adult population was calculated. RESULTS: Israeli milk is rich in iodine, with a mean concentration of 22 µg/100 g. However, due to low dairy consumption, the mean iodine intake from milk and dairy was only 34 µg/day (median 23 µg/day; range: 0-337 µg/day) or 22% of the recommended daily allowance. Self-reported intake among poor, male, and Arab subgroups was even lower. CONCLUSIONS: Because Israeli milk and dairy products are iodine rich, their contribution to the population's iodine intake would increase if they were consumed in greater amounts, particularly by high-risk groups. Dairy's potential contribution to iodine nutrition should be considered in recommendations for dairy consumption and iodine prophylaxis.


Asunto(s)
Productos Lácteos/análisis , Dieta , Yodo/análisis , Leche/química , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Israel , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Estado Nutricional , Embarazo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA