Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
China Occupational Medicine ; (6): 138-143, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1038741

RESUMEN

ObjectiveTo investigate the intervention effect of heat shock protein 60 (HSP60) on learning and memory impairment induced by combined exposure to lead and hypertension in mice, and the relative mechanism of triggering receptor expressed on myeloid cells 2 (TREM2). Methods Specific pathogen-free C57BL/6J male mice were randomly divided into control group, hypertension group, lead-exposed group and lead-exposed + hypertension group, or into control group, heat shock protein 60 (HSP60) control group, lead-exposed + hypertension group and HSP60 intervention group, with 10 mice in each group. Mice of hypertension group and lead-exposed + hypertension group were intraperitoneally injected with angiotensin Ⅱ at a dose of 0.5 mg/(kg·d) for seven consecutive days to induce hypertension model. Mice of the lead-exposed group, lead-exposed + hypertension group, and HSP60 intervention group were given lead acetate drinking water with a mass concentration of 250.0 mg/L, while mice in the control group, hypertension group, and HSP60 control group were given purified water for 12 weeks. Mice of the HSP60 control group and HSP60 intervention group were intraperitoneally injected with a solution of HSP60 at a dose of 4 mg/kg body weight, every other day for a total of three times at the 12th week. The learning and memory ability of mice was detected using the Morris water maze test. The enzyme-linked immunosorbent assay was used to detect the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the hippocampal tissues of the mice. The relative expression of ionized calcium binding adaptor molecule-1 (IBA1) and TREM2 protein in the hippocampus of mice was detected using Western blot. Results i) The number of platform crossings of the mice in the hypertension group and the lead-exposed group was lower than that in the control group (both P<0.05). The escape latency of the mice on the third day was longer and the number of platform crossings was lower in the lead-exposed + hypertension group compared with the control group, hypertension group and lead-exposed group (all P<0.05). The levels of IL-1β, IL-6, and TNF-α in the hippocampus of the other three groups increased compared with the control group (all P<0.05). The relative expression of IBA1 protein in the hippocampus of lead-exposed group and lead-exposed + hypertension group increased (all P<0.05), while the relative protein expression of TREM2 decreased compared with the control group (all P<0.05). The levels of IL-1β, IL-6, TNF-α, and the relative protein expression of IBA1 protein in the hippocampus of the lead-exposed+hypertension group were higher (all P<0.05), and relative expression of TREM2 protein was lower (P<0.05) than those in the hypertension group. The level of TNF-α and the relative expression of IBA1 protein in the hippocampus of lead-exposed+hypertension group were higher than those in lead-exposed group (all P<0.05). ii) The escape latency of mice in the lead-exposed + hypertension group was longer than that in the control group (P<0.05), and the number of platform crossings was fewer than that in the control group (P<0.05). The escape latency of mice in the HSP60 intervention group was shortened (P<0.05), the number of platform crossings increased (P<0.05), and the levels of IL-1β, IL-6, TNF-α and relative expression of IBA1 protein decreased in the hippocampus (all P<0.05), while the relative expression of TREM2 protein increased (P<0.05) compared with the lead-exposed+hypertension group. Conclusion Combined exposure of lead and hypertension has a synergistic effect on learning and memory impairment in mice. The mechanism may be related to the inhibition of TREM2 expression by lead in the hippocampus of hypertensive mice and aggravating the neuroinflammatory response. Intervention with TREM2 receptor agonist HSP60 can alleviate learning and memory impairment in mice exposed to lead and hypertension by up-regulating TREM2 expression in the hippocampus.

2.
Chem Biol Interact ; 370: 110310, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36539177

RESUMEN

Lead (Pb), as a heavy metal, is used in batteries, ceramics, paint, pipes, certain ceramics, e-waste recycling, etc. Chronic Pb exposure can result in the inflammation of the central nervous system, as well as neurobehavioral changes. Both glial cells and neurons are involved in central nervous injury following Pb exposure. However, significant cellular events and their key regulators following Pb exposure remain to be elucidated. In this study, rats were randomly exposed to 250 or 500 mg/L PbAc for 9 weeks. Hippocampal proteomics was performed using isobaric tags for relative absolute quantification. Bioinformatics analysis was used to identify 301 and 267 differentially expressed proteins-which were involved in biological processes, including glial cell activation, neural nucleus development, and mRNA processing-in the low and high Pb exposure groups, respectively. Gene Set Enrichment Analysis showed that astrocyte activation was identified as a significant cellular event occurring in the low- or high-dose Pb exposure group. Subsequently, in vivo and in vitro models of Pb exposure were established to confirm astrocyte activation. As a result, glial fibrillary acidic protein expression in astrocytes was much higher in the Pb exposure group. Moreover, the mRNA expression of neurotoxic reactive astrocyte genes was much higher than that of the control group. The analysis of transcription factors indicated that NF-κB was screened as the top transcription factor, which might regulate astrocyte activation following Pb exposure in the rat hippocampus. The data also showed that the inhibition of NF-κB transcription suppressed astrocyte activation following Pb exposure. Overall, astrocyte activation was one of the significant cellular events following Pb exposure in the rat hippocampus, which was regulated by the NF-κB transcription factor, suggesting that inhibiting astrocyte activation may be a potential target for the prevention of Pb neurotoxicity.


Asunto(s)
Plomo , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Plomo/toxicidad , Astrocitos/metabolismo , Proteómica , Hipocampo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-956188

RESUMEN

Objective:To investigate the effect of nano lead oxide (nano-PbO) exposure on learning and memory as well as spatial exploration ability in the mice, and the role of leukocyte infiltration of brain tissue in neurobehavioral damage caused by nano-PbO exposure.Methods:A total of 60 male SPF grade Kunming mice were divided into control group, low-dose nano-PbO group, medium-dose nano-PbO group and high-dose nano-PbO group according to body mass matching method, with 15 mice in each group.Mice in low, medium and high dose groups of nano-PbO were intraperitoneally injected with 5 mg·kg -1, 10 mg·kg -1, 20 mg·kg -1 nano-PbO, respectively. And mice in the control group were intraperitoneally injected with the same volume of 0.9% normal saline.The frequency of intervention was once a day for 28 days.Morris water maze test and open field test were used to detect the ability of learning and memory and spatial exploration of mice. Western blot was used to detect the protein expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in hippocampus of mice, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) in mouse microvessels and lymphocyte function-associated antigen-1 (LAF-1) in mouse blood leukocyte. The proportion of leukocytes in mouse brain was detected by flow cytometry. All statistical analyses were performed by SPSS 20.0. Morris water maze data were analyzed by repeated measures ANOVA, the other data among multiple groups were compared by one-way ANOVA, and Tukey's test was used for further pairwise comparison.Pearson correlation analysis was performed to evaluate the correlation between neurobehavioral indexes and the proportion of white blood cells, TNF-α and IL-1β in brain tissue. Results:Morris water maze results showed that the escape latency of the four groups of mice had a significant interaction between group and time( F=3.21, P<0.05). The escape latencies of mice in middle and high dose groups of nano-PbO were higher than that in the control group (both P<0.05), and the numbers of crossing the platform of the two groups were lower than that in the control group (both P<0.05). The results of open field test showed that there was a statistically significant difference in the residence time of the mice in the four groups ( F=119.10, P<0.01). The total standing times of mice in the middle group and high dose group of nano-PbO were lower than that in the control group (both P<0.01). The results of Western blot showed that the levels of TNF-α and IL-1β in hippocampus tissue of mice were significant differences among the four groups ( F=7.21, 9.89, both P<0.05). The levels of TNF-α and IL-1β in the hippocampus of mice in the high-dose nano-PbO group were higher than those in the control group (TNF-α: (0.35±0.10), (1.03±0.30), P<0.05; IL-1β: (0.32±0.10), (0.50±0.15), P<0.05). The results of flow cytometry analysis showed that the proportions of leukocytes in the brain tissue of mice in the low, medium and high dose groups of nano-PbO were (9.99±1.09)%, (13.03±0.94)% and (16.51±3.89)%, respectively. Among them, the proportions of leukocytes in the middle and high dose groups of nano-PbO were significantly higher than that in the control group((8.13±1.29)%) (both P<0.05). The results of correlation analysis showed that the proportion of leukocytes, levels of TNF-α, IL-1β protein of hippocampus in the medium, high dose groups of nano-PbO were negatively correlated with the behavioral indexes ( r=-0.815, -0.744, -0.578, all P<0.01; r=-0.771, -0.836, -0.704, all P<0.05; r=-0.823, -0.876, -0.695, all P<0.05). The results of Western blot showed that the levels of ICAM-1 and VCAM-1 in cerebral microvessels of mice in the four groups were significantly different ( F=5.51, 16.19, both P<0.05). The levels of ICAM-1 and VCAM-1 in the middle and high dose groups of nano-PbO were higher than those in the control group(ICAM-1: (1.07±0.16), (1.21±0.35), (0.59±0.19), all P<0.05; VCAM-1: (0.68±0.12), (1.92±0.23), (0.23±0.05), both P<0.05). In addition, there was a significant difference in the level of LFA-1 protein in blood leukocytes of mice in the four groups ( F=41.80, P<0.05). The levels of LFA-1 in the middle and high dose groups of nano-PbO were higher than that in the control group((0.33±0.06), (0.89±0.23), (0.05±0.01), both P<0.05). Conclusion:The nano-PbO exposure can lead to cognitive impairment and increased inflammatory factors in the hippocampus of mice, which may be related to the increase of ICAM-1 and VCAM-1 in vascular endothelial cells, which promotes leukocyte infiltration into brain tissue.

4.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-960498

RESUMEN

Background Lead exposure induces microglial cell death, of which the mechanism is unclear. Ferroptosis is a new death form and its role in microglia death has not been reported. Objective To investigate the role of ferroptosis in microglia following lead exposure in order to provide a theoretical basis for the mechanism of lead neurotoxicity. Methods Microglial cell line BV-2 cells were co-cultured with 0, 10, 20 and 40 μmol·L−1 lead acetate for 24 h. The 40 μmol·L−1 lead acetate group with iron chelator (DFO) was named the 40+DFO group. Changes in BV-2 cell morphology after lead exposure were observed under an inverted microscope; tissue iron kit and glutathione kit were used to detect intracellular iron and glutathione (GSH) respectively; flow cytometry was applied to detect lipid reactive oxygen species (lipid ROS) immunofluorescence intensity. Western blotting and qPCR were adopted to detect the expressions of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), transferrin receptor 1 (TFR-1), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1) protein and mRNA. Results Compared with the control group, the number of BV-2 cells decreased with increasing doses of lead and the cells showed a large, round amoeboid shape. The intracellular levels of iron of BV-2 cells were (1.08±0.04), (1.29±0.03), and (1.72±0.10) mg·g−1 (calculated by protein, thereafter) in the 10, 20, and 40 μmol·L−1 lead acetate groups, respectively, significantly higher than that in the control group (P<0.05), and the intracellular level of iron in the 40+DFO group, (1.34±0.10) mg·g−1, was lower than that in the 40 μmol·L−1 lead acetate group, (1.72±0.03) mg·g−1 (P<0.05). Compared with the control group, the TFR-1 and DMT1 protein and mRNA expressions were increased in BV-2 cells in the 10, 20, 40 μmol·L−1 lead acetate groups (P<0.05), especially in the 40 μmol·L−1 lead acetate group; the FPN1 protein expression did not change significantly, but the FPN1 mRNA expressions in BV-2 cells in the 10, 20, 40 μmol·L−1 lead acetate groups were significantly decreased (P<0.05). Compared with the control group, the intracellular GSH level decreased and the lipid ROS content increased in all three lead acetate groups; compared with the 40 μmol·L−1 lead acetate group, the GSH level increased by 12.30% and the lipid ROS content decreased by 13.00% in the 40+DFO group (P<0.05). The expressions of GPX4 protein were reduced to 50.00%, 35.00%, and 17.00% of that of the control group in the 10, 20, and 40 μmol·L−1 lead acetate groups respectively, while the expressions of GPX4 mRNA were also significantly reduced; the expressions of SLC7A11 protein and mRNA in the 20 and 40 μmol·L−1 lead acetate groups were lower than that in the control group, with the most significant decrease in the 40 μmol·L−1 lead acetate group (P<0.05). Conclusion Lead exposure could induce ferroptosis in BV-2 cells, in which iron transport imbalance and oxidative damage might be involved.

5.
Cell Biochem Funct ; 28(7): 597-603, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20941750

RESUMEN

Aberrant innate and adaptive immune responsed to allergens and environmental pollutants lead to respiratory allergic disease such as asthma. In this study, we focused on toll-like receptor-4 (TLR4) expressed on airway epithelium to identify house dust mite (HDM)-regulated allergic inflammation via TLR4 signaling pathway and the triggering to alveolar macrophages (AM)-driven adaptive immune response. The authors found that mouse exposed to HDM showed more eosinophils, neutrophils, monocytes, lymphocytes as well as total cells in bronchoalveolar lavage fluid (BALF) confirmed by flow cytometry. Besides, the expression of TLR4 in airway epithelial cells was significantly increased in both mRNA and protein levels in mice treated with HDM and the expression of CD40 and CD86 in AM was also increased in mice exposed to HDM. Tight correlation between TLR4 protein and CD40, CD86 in AM was identified. This study demonstrates that TLR4 expression on airway epithelium played an essential role in HDM-induced activation of AM in immune responses and allergic inflammation. The airway epithelial TLR4 signaling pathway revealed tight connection between endotoxin exposure and asthma prevalence in the clinic.


Asunto(s)
Antígenos Dermatofagoides/inmunología , Asma/inmunología , Dermatophagoides pteronyssinus/inmunología , Inflamación/inmunología , Hipersensibilidad Respiratoria/inmunología , Mucosa Respiratoria/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Asma/etiología , Asma/metabolismo , Asma/patología , Antígeno B7-2/metabolismo , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Antígenos CD40/metabolismo , Citocinas/análisis , Femenino , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , Distribución Aleatoria , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Hipersensibilidad Respiratoria/fisiopatología , Mucosa Respiratoria/metabolismo , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA