Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Psychophysiology ; 58(10): e13890, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34219221

RESUMEN

Individual differences in brain network modularity at baseline can predict improvements in cognitive performance after cognitive and physical interventions. This study is the first to explore whether brain network modularity predicts changes in cortical brain structure in 8- to 9-year-old children involved in an after-school physical activity intervention (N = 62), relative to children randomized to a wait-list control group (N = 53). For children involved in the physical activity intervention, brain network modularity at baseline predicted greater decreases in cortical thickness in the anterior frontal cortex and parahippocampus. Further, for children involved in the physical activity intervention, greater decrease in cortical thickness was associated with improvements in cognitive efficiency. The relationships among baseline modularity, changes in cortical thickness, and changes in cognitive performance were not present in the wait-list control group. Our exploratory study has promising implications for the understanding of brain network modularity as a biomarker of intervention-related improvements with physical activity.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Desarrollo Infantil/fisiología , Terapia por Ejercicio , Ejercicio Físico/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Corteza Cerebral/diagnóstico por imagen , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen
2.
Brain Sci ; 11(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466337

RESUMEN

Musical practice, including musical training and musical performance, has been found to benefit cognitive function in older adults. Less is known about the role of musical experiences on brain structure in older adults. The present study examined the role of different types of musical behaviors on brain structure in older adults. We administered the Goldsmiths Musical Sophistication Index, a questionnaire that includes questions about a variety of musical behaviors, including performance on an instrument, musical practice, allocation of time to music, musical listening expertise, and emotional responses to music. We demonstrated that musical training, defined as the extent of musical training, musical practice, and musicianship, was positively and significantly associated with the volume of the inferior frontal cortex and parahippocampus. In addition, musical training was positively associated with volume of the posterior cingulate cortex, insula, and medial orbitofrontal cortex. Together, the present study suggests that musical behaviors relate to a circuit of brain regions involved in executive function, memory, language, and emotion. As gray matter often declines with age, our study has promising implications for the positive role of musical practice on aging brain health.

3.
Front Hum Neurosci ; 14: 346, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100988

RESUMEN

Introduction: Brain network modularity is a principle that quantifies the degree to which functional brain networks are divided into subnetworks. Higher modularity reflects a greater number of within-module connections and fewer connections between modules, and a highly modular brain is often interpreted as a brain that contains highly specialized brain networks with less integration between networks. Recent work in younger and older adults has demonstrated that individual differences in brain network modularity at baseline can predict improvements in performance after cognitive and physical interventions. The use of brain network modularity as a predictor of training outcomes has not yet been examined in children. Method: In the present study, we examined the relationship between baseline brain network modularity and changes (post-intervention performance minus pre-intervention performance) in cognitive and academic performance in 8- to 9-year-old children who participated in an after-school physical activity intervention for 9 months (N = 78) as well as in children in a wait-list control group (N = 72). Results: In children involved in the after-school physical activity intervention, higher modularity of brain networks at baseline predicted greater improvements in cognitive performance for tasks of executive function, cognitive efficiency, and mathematics achievement. There were no associations between baseline brain network modularity and performance changes in the wait-list control group. Discussion: Our study has implications for biomarkers of cognitive plasticity in children. Understanding predictors of cognitive performance and academic progress during child development may facilitate the effectiveness of interventions aimed to improve cognitive and brain health.

4.
Front Neurosci ; 12: 950, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618578

RESUMEN

Children are becoming increasingly inactive, unfit, and overweight, yet there is relatively little causal evidence regarding the effects of physical activity on brain health during childhood. The present study examined the effects of an after-school physical activity program (FITKids2) on the microstructure of white matter tracts in 7- to 9-year-old children. We measured the microstructural properties of white matter via diffusion tensor imaging in 143 children before and after random assignment to either a 9-month after-school physical activity program (N = 76, mean age = 8.7 years) or a wait list control group (N = 67, mean age = 8.7 years). Our results demonstrate that children who participated in the physical activity program showed increased white matter microstructure in the genu of the corpus callosum, with no changes in white matter microstructure in the wait list control group which reflects typical development. Specifically, children in the physical activity program showed increases in fractional anisotropy (FA) and decreases in radial diffusivity (RD) in the genu from pre- to post-test, thereby suggesting more tightly bundled and structurally compact fibers (FA) and increased myelination (RD), with no changes in estimates of axonal fiber diameter (axial diffusivity, AD). The corpus callosum integrates cognitive, motor, and sensory information between the left and right hemispheres of the brain, and the white matter tract plays a role in cognition and behavior. Our findings reinforce the importance of physical activity for brain health during child development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA