Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 8(1): 192, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242834

RESUMEN

Amivantamab is an FDA-approved bispecific antibody targeting EGF and Met receptors, with clinical activity against EGFR mutant non-small cell lung cancer (NSCLC). Amivantamab efficacy has been demonstrated to be linked to three mechanisms of action (MOA): immune cell-mediated killing, receptor internalization and degradation, and inhibition of ligand binding to both EGFR and Met receptors. Among the EGFR ligands, we demonstrated that amphiregulin (AREG) is highly expressed in wild-type (WT) EGFR (EGFRWT) NSCLC primary tumors, with significantly higher circulating protein levels in NSCLC patients than in healthy volunteers. Treatment of AREG-stimulated EGFRWT cells/tumors with amivantamab or with an AREG-targeting antibody inhibited ligand-induced signaling and cell/tumor proliferation/growth. Across 11 EGFRWT NSCLC patient-derived xenograft models, amivantamab efficacy correlated with AREG RNA levels. Interestingly, in these models, amivantamab anti-tumor activity was independent of Fc engagement with immune cells, suggesting that, in this context, the ligand-blocking function is sufficient for amivantamab maximal efficacy. Finally, we demonstrated that in lung adenocarcinoma patients, high expression of AREG and EGFR mutations were mutually exclusive. In conclusion, these data 1) highlight EGFR ligand AREG as a driver of tumor growth in some EGFRWT NSCLC models, 2) illustrate the preclinical efficacy of amivantamab in ligand-driven EGFRWT NSCLC, and 3) identify AREG as a potential predictive biomarker for amivantamab activity in EGFRWT NSCLC.

2.
Methods Cell Biol ; 167: 81-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153000

RESUMEN

This chapter describes the most common method for evaluating cytotoxicity of chimeric antigen receptor (CAR) T cells, the xCELLigence real-time cell analysis (RTCA) platform (Agilent Technologies, Inc., Santa Clara, CA). Though there are a variety of assays used to evaluate conventional and engineered T cell cytotoxicity, the benefit of the xCELLigence platform is the depth of real-time data collected. This chapter begins by providing information on the conceptual basis underlying the xCELLigence assay, followed by a detailed protocol for the application of this assay to evaluate your own CAR-T cells, as well as specific insight and helpful tips for assay design, usage, and data analysis. Application of the information and methods discussed within this chapter will provide a greater understanding for evaluating cytotoxicity of CAR-T cells using this in vitro model system.


Asunto(s)
Linfocitos T Citotóxicos , Línea Celular Tumoral , Impedancia Eléctrica
3.
Expert Rev Precis Med Drug Dev ; 6(2): 117-129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34027103

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. AREAS COVERED: We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. EXPERT OPINION: The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA