Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411441, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041462

RESUMEN

We report on the synthesis, crystal, and electronic structure, as well as the magnetic, and electric properties of the phosphorus-containing tantalum nitride P1-xTa8+xN13 (x = 0.1-0.15). A high-pressure high-temperature reaction (8 GPa, 1400 °C) of Ta3N5 and P3N5 with NH4F as a mineralizing agent yields the compound in the form of black, rod-shaped crystals. Single-crystal X-ray structure elucidation (space group C2/m (no. 12), a = 16.202(3), b = 2.9155(4), c = 11.089(2) Å, ß = 126.698(7)°, Z = 2) shows a network of face- and edge-sharing Ta-centered polyhedra that contains small vacant channels and  PN6 octahedra strands. Atomic resolution transmission electron microscopy reveals an unusual P/Ta disorder. Mixed-valent tantalum atoms exhibit interatomic distances similar to those in metallic tantalum, however, the electrical resistivity is quite high in the order of 10­1 Ω cm. The density of states and the electron localization function indicate localized electrons in both covalent and ionic bonds between P/Ta and N atoms, combined with less localized electrons that do not contribute to interatomic bonds.

2.
Chempluschem ; 89(7): e202400031, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38436519

RESUMEN

1- and 2-Tetrazolylacetonitrile (1- and 2-TAN) have been synthesized by the reaction of chloroacetonitrile with 1H-tetrazole under basic conditions. They further were reacted with sodium azide in the presence of zinc(II) chloride to form 5-((1H-tetrazol-1-yl)methyl)-1H-tetrazole (1-HTMT) and 5-((2H-tetrazol-2-yl)methyl)-1H-tetrazole (2-HTMT). The nitrogen-rich compounds have been applied as ligands for Energetic Coordination Compounds (ECCs) and show interesting coordinative behavior due to different bridging modes. The structural variability of the compounds has been proved by low-temperature X-ray analysis. The ECCs were analyzed for their sensitivities to provide information about the safety of handling and their capability to serve as primary explosives in detonator setups to replace the commonly used lead styphnate and azide. All colored ECCs were evaluated for their ignitability by laser initiation in translucent polycarbonate primer caps. In addition, the spin-crossover characteristics of [Fe(1-TAN)6](ClO4)2 were highlighted by the measurement of the temperature-dependent susceptibility curve.

3.
Angew Chem Int Ed Engl ; 63(14): e202401421, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38361110

RESUMEN

The first nitridic analog of an amphibole mineral, the quaternary nitridosilicate phosphate Cr5.7Si2.3P8N24 was synthesized under high-pressure high-temperature conditions at 1400 °C and 12 GPa from the binary nitrides Cr2N, Si3N4 and P3N5, using NH4N3 and NH4F as additional nitrogen source and mineralizing agent, respectively. The crystal structure was elucidated by single-crystal X-ray diffraction with microfocused synchrotron radiation (C2/m, a=9.6002(19), b=17.107(3), c=4.8530(10) Å, ß=109.65(3)°). The elemental composition was analyzed by energy dispersive X-ray spectroscopy. The structure consists of vertex-sharing PN4-tetrahedra forming zweier double chains and edge-sharing (Si,Cr)-centered octahedra forming separated ribbons. Atomic resolution scanning transmission electron microscopy shows ordered Si and Cr sites next to a disordered Si/Cr site. Optical spectroscopy indicates a band gap of 2.1 eV. Susceptibility measurements show paramagnetic behavior and support the oxidation state Cr+IV, which is confirmed by EPR. The comprehensive analysis expands the field of Cr-N chemistry and provides access to a nitride analog of one of the most prevalent silicate structures.

4.
Chemistry ; 30(14): e202303696, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38147485

RESUMEN

The quaternary phosphidosilicates AE2 Li4 SiP4 (AE=Ca, Sr, Eu) and Ba4 Li16 Si3 P12 were synthesized by heating the elements and Li3 P under argon atmosphere. Their crystal structures were determined by single crystal X-ray diffraction. AE2 Li4 SiP4 crystallize in a new layered structure type (P21 /m, Z=2) with CdI2 -analoguos layers. Edge sharing CaP6 octahedra are separated by layers of vertex-sharing SiP4 and LiP4 tetrahedra, which contain additional chains of LiP6 octahedra. Ba4 Li16 Si3 P12 forms likewise a new structure type (P21 /c, Z=16) with a three-dimensional network of SiP4 , Si2 P6 and LiP4 entities as well as one phosphorus site not bonded to silicon. Barium is located in capped trigonal prisms of phosphorus which form strongly corrugated layers. 31 P and 29 Si solid-state NMR spectra confirm the crystal structures of the compounds AE2 Li4 SiP4 . 7 Li spectra show only one signal in spite of quite different crystallographic positions, which indicate possible Li+ mobility. However, this signal is much broader compared to the known Li+ conducting phosphidosilicates. Accordingly, electrochemical impedance measurements show low Li+ conductivities.

5.
Chem Commun (Camb) ; 58(6): 835-838, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34931647

RESUMEN

Lanthanoid and actinoid silylamides are versatile starting materials. Herein we show how a simple ligand exchange with tert-butanol leads to the formation of the first trimeric heterobimetallic uranyl(VI)-lanthanoid(III) alkoxide complexes. The µ3 coordination of the endogenous uranyl oxo atom results in a significant elongation of the bond length and a significant deviation from the linear uranyl arrangement.

6.
Angew Chem Int Ed Engl ; 60(41): 22260-22264, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34355842

RESUMEN

While halide and oxide perovskites are numerous and many display outstanding properties, ABN3 perovskite nitrides are extremely rare due to synthetic challenges arising from the low chemical potential of nitrogen and a tendency to form low-coordination nitridometallate anions. We report the preparation of a perovskite nitride LaReN3 through azide-mediated oxidation at high pressure. High-resolution synchrotron diffraction shows that LaReN3 has a low-symmetry, triclinic, perovskite superstructure resulting from orbital ordering with strong spin-orbit coupling distortions. Topotactic reduction of LaReN3 above 500 °C leads to layered tetragonal LaReN2 via a probable LaReN2.5 intermediate, which is the first reported example of nitride defect perovskites. Magnetisation and conductivity measurements indicate that LaReN3 and LaReN2 are both metallic solids. The two chemical approaches presented are expected to lead to new classes of ABN3 and defect ABN3-x nitride perovskite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA