Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294376

RESUMEN

Metallurgical production traditionally involves three steps: extracting metals from ores, mixing them into alloys by liquid processing and thermomechanical processing to achieve the desired microstructures1,2. This sequential approach, practised since the Bronze Age, reaches its limit today because of the urgent demand for a sustainable economy2-5: almost 10% of all greenhouse gas emissions are because of the use of fossil reductants and high-temperature metallurgical processing. Here we present a H2-based redox synthesis and compaction approach that reforms traditional alloy-making by merging metal extraction, alloying and thermomechanical processing into one single solid-state operation. We propose a thermodynamically informed guideline and a general kinetic conception to dissolve the classical boundaries between extractive and physical metallurgy, unlocking tremendous sustainable bulk alloy design opportunities. We exemplify this approach for the case of Fe-Ni invar bulk alloys6,7, one of the most appealing ferrous materials but the dirtiest to produce: invar shows uniquely low thermal expansion6,8,9, enabling key applications spanning from precision instruments to cryogenic components10-13. Yet, it is notoriously eco-unfriendly, with Ni causing more than 10 times higher CO2 emission than Fe per kilogram production2,14, qualifying this alloy class as a perfect demonstrator case. Our sustainable method turns oxides directly into green alloys in bulk forms, with application-worthy properties, all obtained at temperatures far below the bulk melting point, while maintaining a zero CO2 footprint.

2.
Nat Commun ; 15(1): 6486, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090088

RESUMEN

Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 107 K s-1) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs. Surprisingly, irrespective of the processing and thermal treatment history, all samples exhibit similar levels of SRO. Atomistic simulations reveal that during solidification, prevalent local chemical order arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 1011 K s-1. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most FCC MPEAs, insensitive to variations in cooling rates and even annealing treatments typically available in experiments.

3.
Adv Mater ; 36(33): e2406382, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842485

RESUMEN

Mechanical properties of titanium alloys, one of humankind's most essential structural materials, suffer from the lack of 〈c + a〉 dislocations on pyramidal slip planes, failing homogeneous plastic strain accommodation. This mechanical treasure is not easily accessible in titanium alloys because of the required excessively high stress levels. The present work demonstrates that such a dilemma may be overcome by meticulously tuning the c/a ratio, the simplest crystallographic parameter of the hexagonal close-packed lattice, through Sn alloying. Combining this lattice-scale design concept with a cross-rolling based polycrystal-scale design solution, this study showcases a facile route to bimodal (α + ß) titanium alloys with exceptional strength-ductility synergy.

5.
Nat Mater ; 19(11): 1175-1181, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32839590

RESUMEN

Metallic alloys containing multiple principal alloying elements have created a growing interest in exploring the property limits of metals and understanding the underlying physical mechanisms. Refractory high-entropy alloys have drawn particular attention due to their high melting points and excellent softening resistance, which are the two key requirements for high-temperature applications. Their compositional space is immense even after considering cost and recyclability restrictions, providing abundant design opportunities. However, refractory high-entropy alloys often exhibit apparent brittleness and oxidation susceptibility, which remain important challenges for their processing and application. Here, utilizing natural-mixing characteristics among refractory elements, we designed a Ti38V15Nb23Hf24 refractory high-entropy alloy that exhibits >20% tensile ductility in the as-cast state, and physicochemical stability at high temperatures. Exploring the underlying deformation mechanisms across multiple length scales, we observe that a rare ß'-phase plays an intriguing role in the mechanical response of this alloy. These results reveal the effectiveness of natural-mixing tendencies in expediting high-entropy alloy discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA