Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 308: 105286, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39173902

RESUMEN

AIM: To provide a novel perspective on the pathogenesis of acute myocardial infarction (AMI) patients with respect to glutamic oxaloacetic transaminase (GOT). METHODS: The plasma proteome of 20 patients with AMI were matched for age and sex and compared with 10 healthy individuals. We analyzed the mass spectrum data and compared the signal intensity of the corresponding peptides which related to their corresponding proteins. A sample-specific protein database was constructed and a quality control analysis was conducted to screen out the key regulatory proteins under specific experimental conditions. The data from 37 new AMI patients and 13 healthy adults were subjected to parallel reaction monitoring (PRM) to verify the target proteins found. Finally, the survival status of the key genes (> 1.5-fold) in the PPI were analyzed. RESULTS: 2589 and 2162 proteins were identified and quantified, respectively, and 143 differentially expressed proteins (DEPs) (≥1.5-fold) were found between the AMI and control groups. Of these 90 and 53 were significantly up-regulated and down-regulated, respectively. Gene ontology, KEGG enrichment, protein domain and cluster analysis as well as PPI networks of the DEPs revealed a central role of acute inflammatory response processes in patients with AMI. A cluster of proteins were found to be related to cysteine, methionine, arginine, proline, phenylalanine and propanoate metabolism as well as the cAMP signaling pathway. PPI network analysis showed CHI3L1, COPB2, GOT2, MB, CYCS, GOT1, CKM, SAA1 and PRKCD and RPS3 were in key positions, but only MB, CKM, GOT1, PRKCD, CYCS and GOT2 were found in a cluster. PRM verified the high levels of MB, CKM, GOT1 and GOT2 in 37 AMI patients but there was no statistical difference in the survival status for patients with either high or low expression levels of these proteins. CONCLUSIONS: Our findings showed that acute inflammatory response processes play a central role in patients with AMI. Cysteine and methionine metabolism was also activated, in which GOT1 and GOT2 were key proteins. These pathways might be potential targets for diagnosis and novel therapies to improve the poor outcomes observed in patients with heart failure.


Asunto(s)
Aspartato Aminotransferasas , Biomarcadores , Infarto del Miocardio , Proteómica , Humanos , Infarto del Miocardio/sangre , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Proteómica/métodos , Aspartato Aminotransferasas/sangre , Anciano , Proteoma/metabolismo , Adulto
2.
Plants (Basel) ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678984

RESUMEN

Dwarfing rootstocks are capable of high-density planting and are therefore urgently needed in the modern citrus cultivation system. However, little is known about the physiological relevance and molecular basis underlying citrus height. This study aimed to comprehensively analyze phytohormone, carbohydrate, and associated transcriptome changes in the stem of two weak growth rootstocks ('TO' and 'FD') relative to the vigorous 'CC' rootstock. The phenotypic observation revealed that the plant height, plant weight, and internode length were reduced in dwarfing rootstocks. Moreover, the contents of indole-3-acetic acid (IAA), trans-zeatin (tZ), and abscisic acid (ABA), were higher in TO and FD rootstocks, whereas the gibberellin 3 (GA3) content was higher in the CC rootstocks. The carbohydrate contents, including sucrose, fructose, glucose, starch, and lignin significantly decreased in both the TO and FD rootstocks. The full-length transcriptome analysis revealed a potential mechanism regulating dwarfing phenotype that was mainly related to the phytohormone signaling transduction, sugar and starch degradation, lignin synthesis, and cellulose and hemicellulose degradation processes. In addition, many transcription factors (TFs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) events were identified, which might act as important contributors to control the stem elongation and development in the weak growth rootstocks. These findings might deepen the understanding of the complex mechanisms of the stem development responsible for citrus dwarfing and provide a series of candidate genes for the application in breeding new rootstocks with intensive dwarfing.

3.
Front Plant Sci ; 12: 759968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925410

RESUMEN

To elucidate the mechanism underlying special characteristic differences between a spontaneous seedling mutant 'Huapi' kumquat (HP) and its wild-type 'Rongan' kumquat (RA), the fruit quality, metabolic profiles, and gene expressions of the peel and flesh were comprehensively analyzed. Compared with RA, HP fruit has distinctive phenotypes such as glossy peel, light color, and few amounts of oil glands. Interestingly, HP also accumulated higher flavonoid (approximately 4.1-fold changes) than RA. Based on metabolomics analysis, we identified 201 differential compounds, including 65 flavonoids and 37 lipids. Most of the differential flavonoids were glycosylated by hexoside and accumulated higher contents in the peel but lower in the flesh of HP than those of RA fruit. For differential lipids, most of them belonged to lysophosphatidycholines (LysoPCs) and lysophosphatidylethanolamines (LysoPEs) and exhibited low abundance in both peel and flesh of HP fruit. In addition, structural genes associated with the flavonoid and lipid pathways were differentially regulated between the two kumquat varieties. Gene expression analysis also revealed the significant roles of UDP-glycosyltransferase (UGT) and phospholipase genes in flavonoid and glycerophospholipid metabolisms, respectively. These findings provide valuable information for interpreting the mutation mechanism of HP kumquat.

4.
J Sci Food Agric ; 101(10): 4321-4331, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33417244

RESUMEN

BACKGROUND: The levels and ratios of sugar and acid are important contributors to fruit taste. Kumquat is one of the most economically important citrus crops, but information on the soluble sugar and organic acid metabolism in kumquat is limited. Here, two kumquat varieties - 'Rongan' (RA) and its mutant 'Huapi' (HP) - were used to assess soluble sugar and organic acid accumulation and the related genes. RESULTS: Soluble sugars include sucrose, glucose and fructose, while malate, quinic acid and citrate are the dominant organic acids in the fruits of both kumquat varieties. HP accumulated more sugars but fewer organic acids than did RA. Transcriptome analysis revealed 63 and 40 differentially expressed genes involved in soluble sugar and organic acid accumulation, respectively. The genes associated with sugar synthesis and transport, including SUS, SPS, TST, STP and ERD6L, were up-regulated, whereas INVs, FRK and HXK genes related to sugar degradation were down-regulated in HP kumquat. For organic acids, the up-regulation of PEPC and NAD-MDH could accelerate malate accumulation. In contrast, high expression of NAD-IDH and GS resulted in citric acid degradation during HP fruit development. Additionally, the PK, PDH, PEPCK and FBPase genes responsible for the interconversion of soluble sugars and organic acids were also significantly altered in the early development stages in HP. CONCLUSION: The high sugar accumulation in HP fruit was associated with up-regulation of SUS, SPS, TST, STP and ERD6L genes. The PEPCK, PEPC, NAD-MDH, NADP-IDH, GS and FBPase genes played important roles in acid synthesis and degradation in HP kumquat. These findings provide further insight into understanding the mechanisms underlying metabolism of sugars and organic acids in citrus. © 2021 Society of Chemical Industry.


Asunto(s)
Ácidos/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Rutaceae/genética , Azúcares/metabolismo , Ácidos/análisis , Ácido Cítrico/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malatos/metabolismo , Proteínas de Plantas/metabolismo , Rutaceae/metabolismo
5.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683503

RESUMEN

Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. As a dominant abiotic stress factor in soil, boron (B) deficiency stress has impacted the growth and development of citrus in the red soil region of southern China. In the present work, we performed a genome-wide identification and characterization of lncRNAs in response to B deficiency stress in the leaves of trifoliate orange (Poncirus trifoliata), an important rootstock of citrus. A total of 2101 unique lncRNAs and 24,534 mRNAs were predicted. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed for a total of 16 random mRNAs and lncRNAs to validate their existence and expression patterns. Expression profiling of the leaves of trifoliate orange under B deficiency stress identified 729 up-regulated and 721 down-regulated lncRNAs, and 8419 up-regulated and 8395 down-regulated mRNAs. Further analysis showed that a total of 84 differentially expressed lncRNAs (DELs) were up-regulated and 31 were down-regulated, where the number of up-regulated DELs was 2.71-fold that of down-regulated. A similar trend was also observed in differentially expressed mRNAs (DEMs, 4.21-fold). Functional annotation of these DEMs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and the results demonstrated an enrichment of the categories of the biosynthesis of secondary metabolites (including phenylpropanoid biosynthesis/lignin biosynthesis), plant hormone signal transduction and the calcium signaling pathway. LncRNA target gene enrichment identified several target genes that were involved in plant hormones, and the expression of lncRNAs and their target genes was significantly influenced. Therefore, our results suggest that lncRNAs can regulate the metabolism and signal transduction of plant hormones, which play an important role in the responses of citrus plants to B deficiency stress. Co-expression network analysis indicated that 468 significantly differentially expressed genes may be potential targets of 90 lncRNAs, and a total of 838 matched lncRNA-mRNA pairs were identified. In summary, our data provides a rich resource of candidate lncRNAs and mRNAs, as well as their related pathways, thereby improving our understanding of the role of lncRNAs in response to B deficiency stress, and in symptom formation caused by B deficiency in the leaves of trifoliate orange.


Asunto(s)
Boro/metabolismo , Genoma de Planta/genética , Hojas de la Planta/genética , Poncirus/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Microscopía Electrónica , Reguladores del Crecimiento de las Plantas/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Poncirus/metabolismo , Poncirus/ultraestructura , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
6.
J Exp Bot ; 65(1): 61-74, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24215076

RESUMEN

Auxin-like 2,4-dichlorophenoxyacetic acid (2,4-D), a high-efficiency anti-stalling agent for the post-harvest fresh fruit industry, has had its use restricted due to environmental concerns. However, no other substitutes for 2,4-D are available to the post-harvest industry. Insights into the molecular mechanism underlying the effects of 2,4-D on fruit quality preservation will provide a theoretical basis for exploring new safe and effective anti-stalling agents. This study comprehensively analysed changes in the peel of Olinda Valencia orange [Citrus sinensis (L.) Osbeck] induced by 500 ppm 2,4-D using 'omic'-driven approaches. Transcriptional profiling revealed that transcriptional factor (mainly AP2/ERF, WRKY, and NAC family members), transport, and hormone metabolism genes were over-represented and up-regulated within 24h post-treatment (HPT). Stress defence genes were up-regulated, while cell wall metabolism genes were down-regulated after 48 HPT. However, secondary metabolism genes, especially phenylpropanoid and lignin biosynthesis-related genes, were over-represented at all the time points. Comparative proteomic analysis indicated that the expression of proteins implicated in stress responses (25%), hormone metabolism, and signal transduction (12%) significantly accumulated at the post-transcriptional level. Hormone levels detected by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) showed that abscisic acid, salicylic acid, and 2,4-D significantly increased, while ethylene production (detected by gas chromatography) decreased after 2,4-D treatment. In addition, lignin and water content in the fruit peel also increased and the epicuticle wax ultrastructure was modified. In conclusion, 2,4-D retarded fruit senescence by altering the levels of many endogenous hormones and by improving stress defence capabilities by up-regulating defence-related genes and proteins.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/farmacología , Citrus sinensis/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteómica , Ácido Abscísico/metabolismo , Cromatografía Líquida de Alta Presión , Citrus/efectos de los fármacos , Citrus/genética , Citrus/fisiología , Citrus/ultraestructura , Citrus sinensis/efectos de los fármacos , Citrus sinensis/genética , Citrus sinensis/ultraestructura , Electroforesis en Gel Bidimensional , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Lignina/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Estrés Fisiológico , Espectrometría de Masas en Tándem , Factores de Tiempo , Regulación hacia Arriba , Agua/metabolismo
7.
Front Plant Sci ; 5: 795, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25674093

RESUMEN

Boron (B) deficiency has seriously negative effect on citrus production. Carrizo citrange (CC) has been reported as a B-deficiency tolerant rootstock. However, the molecular mechanism of its B-deficiency tolerance remained not well-explored. To understand the molecular basis of citrus rootstock to B-deficiency, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potential important or novel genes responsive to B-deficiency. Firstly four SSH libraries were constructed for the root tissue of two citrus rootstocks CC and Trifoliate orange (TO) to compare B-deficiency treated and non-treated plants. Then 7680 clones from these SSH libraries were used to construct a cDNA array and microarray analysis was carried out to verify the expression changes of these clones upon B-deficiency treatment at various time points compared to the corresponding controls. A total of 139 unigenes that were differentially expressed upon B-deficiency stress either in CC or TO were identified from microarray analysis, some of these genes have not previously been reported to be associated with B-deficiency stress. In this work, several genes involved in cell wall metabolism and transmembrane transport were identified to be highly regulated under B-deficiency stress, and a total of 23 metabolic pathways were affected by B-deficiency, especially the lignin biosynthesis pathway, nitrogen metabolism, and glycolytic pathway. All these results indicated that CC was more tolerant than TO to B-deficiency stress. The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.

8.
PLoS One ; 8(6): e65737, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755275

RESUMEN

Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.


Asunto(s)
Boro/deficiencia , Citrus sinensis/genética , Enfermedades de las Plantas , Haz Vascular de Plantas/genética , Citrus sinensis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Ontología de Genes , Genes de Plantas , Redes y Vías Metabólicas/genética , Haz Vascular de Plantas/metabolismo , Haz Vascular de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA