Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stud Mycol ; 108: 1-411, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39100921

RESUMEN

The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Blaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilanski P, Bradley CA, Bubner B, Burgess TI, Buyck B, Cadez N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.

2.
Opt Express ; 13(7): 2439-43, 2005 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-19495135

RESUMEN

We report a strong spectral broadening of femtosecond pulses propagating in a single-mode As-S glass fiber of 1.5 m length. The pump pulse spectrum is broadened by a factor of five when the input power is grown up to 16.4 mW. The broadened spectra are nearly symmetric and self-phase modulation is believed to be the dominant nonlinear effect responsible for this process.

3.
Yao Xue Xue Bao ; 31(5): 375-80, 1996.
Artículo en Chino | MEDLINE | ID: mdl-9275716

RESUMEN

The polybutylcyanoacrylate nanoparticles of 3H-labeled gentamicin were prepared in order to investigate the possibility of gentamicin nanoparticles as an intracellular drug delivery system for intracellular chemotherapy. The 3H-labeled gentamicin nanoparticles were incubated with mouse peritoneal macrophage (MPM) or rat hepatocytes (RH) for some period, then the cells were separated from the nanoparticles, and finally the radioactivity (cpm) of 3H in the cells were measured by a liquid scintillation counter. By comparison with the solution of 3H-labeled gentamicin, a 6.34 times increase of cpm value in MPM after 30 min incubation, and 27.74, 9.03 and 8.36 times increase of MPM values in RH after 1, 12, and 24 h incubation respectively, were observed by binding gentamicin with polybutylcyanoacrylate nanoparticles. The particle size, surfactant coating, stabilizer and the gentamicin concentration were found to have some effect on the uptake of nanoparticles by two kinds of cells. This study provided a basis for the screening of intracellular drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Gentamicinas/administración & dosificación , Hígado/metabolismo , Macrófagos Peritoneales/metabolismo , Animales , Gentamicinas/metabolismo , Técnicas In Vitro , Hígado/citología , Ratones , Microesferas , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA