Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(22): 27712-27730, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33511537

RESUMEN

The amount of CO2 embodied in trade has substantially increased over the last decades. We contribute to understanding the reasons for this evolution by studying the trends and some drivers of the carbon intensity of trade over the period 1995-2009 in 41 countries and 35 sectors. Our empirical analysis relies on the World Input-Output Database (WIOD) to compute embodied carbon emissions. Our main findings are the following. First, average emission intensity of traded goods is higher than average emission intensity of final demand. Second, relatively "dirty" countries tend to specialize in emission-intensive sectors. Third, the share of goods produced in emission-intensive countries is rising. Finally, we find that coal abundance (measured as fuel rent and controlling for reverse causality) leads both to a specialization in "dirty" sectors and to an increase in emissions per output when controlling for sector structure, which amounts to a fossil fuel endowment effect. These findings suggest trade liberalization may increase global emissions and therefore highlight the importance of considering trade when designing CO2 reduction strategies.


Asunto(s)
Dióxido de Carbono , Combustibles Fósiles , Carbono/análisis , Dióxido de Carbono/análisis , China , Carbón Mineral , Comercio
2.
Artículo en Inglés | MEDLINE | ID: mdl-22622985

RESUMEN

This paper explores the possibility of using AlN/sapphire piezoelectric bilayer structures for high-temperature SAW applications. To determine the temperature stability of AlN, homemade AlN/sapphire samples are annealed in air atmosphere for 2 to 20 h at temperatures from 700 to 1000°C. Ex situ X-ray diffraction measurements reveal that the microstructure of the thin film is not affected by temperatures below 1000°C. Ellipsometry and secondary ion mass spectroscopy investigations attest that AlN/sapphire is reliable up to 700°C. Beyond this temperature, both methods indicate ongoing surface oxidation of AlN. Additionally, Pt/Ta and Al interdigital transducers are patterned on the surface of the AlN film. The resulting SAW devices are characterized up to 500°C and 300°C, respectively, showing reliable frequency response and a large, quasi-constant temperature sensitivity, with a first-order temperature coefficient of frequency around -75 ppm/°C. Between room temperature and 300°C, both electromechanical coupling coefficient K(2) and propagation losses increase, so the evolution of delay lines' insertion losses with temperature strongly depends on the length of the propagation path.

3.
Artículo en Inglés | MEDLINE | ID: mdl-21429851

RESUMEN

In this paper, we report on the use of tantalum as adhesion layer for platinum electrodes used in high-temperature SAW devices based on langasite substrates (LGS). Tantalum exhibits a great adhesive strength and a very low mobility through the Pt film, ensuring a device lifetime at 900°C of about one hour in an air atmosphere and at least 20 h under vacuum. The latter is limited by morphological modifications of platinum, starting with the apparition of crystallites on the surface, followed by important terracing and breaking of the film continuity. Secondary neutral mass spectroscopy (SNMS), Auger electron spectroscopy (AES), X-ray diffraction (XRD) measurements, and comparison with iridium-based electrodes allowed us to show that this deterioration is likely intrinsic to platinum film, consisting of agglomeration phenomena. Finally, based on these results, we present a solution that could significantly enhance the lifetime of Pt-based IDTs placed in high-temperature conditions.

4.
J Chem Phys ; 121(11): 5482-7, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15352843

RESUMEN

The diffusion of all stable lanthanides was measured both in calcia stabilized zirconia (CSZ) and in yttria stabilized zirconia (YSZ) in the temperature range between 1,286 and 1,600 degrees C. The lanthanide diffusion coefficients obtained increase with increasing ionic radius. The experimental activation enthalpy of diffusion is near 6 eV for CSZ and between 4 and 5 eV for YSZ and is not strongly affected by the type of lanthanide. The results were correlated with defect energy calculations of the lanthanide diffusion enthalpy using the Mott-Littleton approach. An association enthalpy of cation vacancies with oxygen vacancies of about 1 eV (96 kJ/mol) was deduced in the case of CSZ, while there is no association in the case of YSZ. Furthermore, the change in diffusion coefficients can be correlated to the interaction parameter for the interaction between the lanthanide oxide with zirconia: The higher the interaction parameter, the higher the lanthanide diffusion coefficient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA