Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(11): 12821-12833, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32093477

RESUMEN

In the pursuit for future mobility, solid-state batteries open a wide field of promising battery concepts with a variety of advantages, ranging from energy density to power capability. However, trade-offs need to be addressed, especially for large-scale, cost-effective processing, which implies the use of a polymeric binder in the composite electrodes. Here, we investigate three-dimensional microstructure models of the active material, solid electrolyte, and binder to link cathode design and binder content with electrode performance. Focusing on lithium-ion transport, we evaluate the effective ionic conductivity and tortuosity in a flux-based simulation. Therein, we address the influence of electrode composition and active material particle size as well as the process-controlled design parameters of the void space and binder content. Even though added in small amounts, the latter has a strong negative influence on the ion transport paths and the active surface area. The simulation of ion transport within four-phase composites is supplemented by an estimation of the limiting current densities, illustrating that application-driven cell design starts at the microstructure level.

2.
ACS Appl Mater Interfaces ; 10(51): 44452-44462, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30511570

RESUMEN

Advanced lithium-ion batteries are of great interest for consumer electronics and electric vehicle applications; however, they still suffer from drawbacks stemming from cathode active material limitations (e.g., insufficient capacities and capacity fading). One approach for alleviating such limitations and stabilizing the active material structure may be anion doping. In this work, fluorine and nitrogen are investigated as potential dopants in Li1.02(Ni0.8Co0.1Mn0.1)0.98O2 (NCM) as a prototypical nickel-rich cathode active material. Nitrogen doping is achieved by ammonia treatment of NCM in the presence of oxygen, which serves as an unconventional and new approach. The crystal structure was investigated by means of Rietveld and pair distribution function analysis of X-ray diffraction data, which provide very precise information regarding both the average and local structure, respectively. Meanwhile, time-of-flight secondary-ion mass spectroscopy was used to assess the efficacy of dopant incorporation within the NCM structure. Moreover, scanning electron microscopy and scanning transmission electron microscopy were conducted to thoroughly investigate the dopant influences on the NCM morphology. Finally, the electrochemical performance was tested via galvanostatic cycling of half- and full-cells between 0.1 and 2 C. Ultimately, a dopant-dependent modulation of the NCM structure was found to enable the enhancement of the electrochemical performance, thereby opening a route to cathode active material optimization.

3.
ACS Appl Mater Interfaces ; 10(13): 10935-10944, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29516733

RESUMEN

Li1+ xAl xGe2- x(PO4)3 (LAGP) is a solid lithium-ion conductor belonging to the NASICON family, representing the solid solution of LiGe2(PO4)3 and AlPO4. The typical syntheses of LAGP either involve high-temperature melt-quenching, which is complicated and expensive, or a sol-gel process requiring costly organic germanium precursors. In this work, we report a simple method based on aqueous solutions without the need of ethoxide precursors. Using synchrotron and neutron diffraction, the crystal structure, the occupancies for Al and Ge, and the distribution of lithium were determined. Substitution of germanium by aluminum allows for an increased Li+ incorporation in the material and the actual Li+ content in the sample increases with the nominal Li+ content and a solubility limit is observed for higher aluminum content. By means of impedance spectroscopy, an increase in the ionic conductivity with increasing lithium content is observed. Whereas the lithium ionic conductivity improves, due to the increasing carrier density, the bulk activation energy increases. This correlation suggests that changes in the transport mechanism and correlated motion may be at play in the Li1+ xAl xGe2- x(PO4)3 solid solution.

4.
ACS Appl Mater Interfaces ; 9(41): 35888-35896, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28937736

RESUMEN

All-solid-state batteries (SSBs) have recently attracted much attention due to their potential application in electric vehicles. One key issue that is central to improve the function of SSBs is to gain a better understanding of the interfaces between the material components toward enhancing the electrochemical performance. In this work, the interfacial properties of a carbon-containing cathode composite, employing Li10GeP2S12 as the solid electrolyte, are investigated. A large interfacial charge-transfer resistance builds up upon the inclusion of carbon in the composite, which is detrimental to the resulting cycle life. Analysis by X-ray photoelectron spectroscopy reveals that carbon facilitates faster electrochemical decomposition of the thiophosphate solid electrolyte at the cathode/solid electrolyte interface-by transferring the low chemical potential of lithium in the charged state deeper into the solid electrolyte and extending the decomposition region. The occurring accumulation of highly oxidized sulfur species at the interface is likely responsible for the large interfacial resistances and aggravated capacity fading observed.

5.
Inorg Chem ; 56(11): 6681-6687, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28485931

RESUMEN

Inspired by the ongoing search for new superionic lithium thiophosphates for use in solid-state batteries, we present the synthesis and structural characterization of Li2P2S6, a novel crystalline lithium thiophosphate. Whereas M2P2S6 with the different alkaline elements (M = Na, K, Rb, Cs) is known, the lithium counterpart has not been reported yet. Herein, we present a combination of synchrotron pair distribution function analysis and neutron powder diffraction to elucidate the crystal structure and possible Li+ diffusion pathways of Li2P2S6. Additionally, impedance spectroscopy is used to evaluate its ionic conductivity. We show that Li2P2S6 possesses P2S62- polyhedral units with edge-sharing PS4 tetrahedra and only one-dimensional diffusion pathways with localized Li-Li pairs, leading to a low ionic conductivity for lithium.

6.
ACS Appl Mater Interfaces ; 9(21): 17835-17845, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28481084

RESUMEN

All-solid-state lithium-ion batteries have the potential to become an important class of next-generation electrochemical energy storage devices. However, for achieving competitive performance, a better understanding of the interfacial processes at the electrodes is necessary for optimized electrode compositions to be developed. In this work, the interfacial processes between the solid electrolyte (Li10GeP2S12) and the electrode materials (In/InLi and LixCoO2) are monitored using impedance spectroscopy and galvanostatic cycling, showing a large resistance contribution and kinetic hindrance at the metal anode. The effect of different fractions of the solid electrolyte in the composite cathodes on the rate performance is tested. The results demonstrate the necessity of a carefully designed composite microstructure depending on the desired applications of an all-solid-state battery. While a relatively low mass fraction of solid electrolyte is sufficient for high energy density, a higher fraction of solid electrolyte is required for high power density.

7.
ACS Appl Mater Interfaces ; 8(41): 28216-28224, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27677413

RESUMEN

The interfacial stability of solid electrolytes at the electrodes is crucial for an application of all-solid-state batteries and protected electrodes. For instance, undesired reactions between sodium metal electrodes and the solid electrolyte form charge transfer hindering interphases. Due to the resulting large interfacial resistance, the charge transfer kinetics are altered and the overvoltage increases, making the interfacial stability of electrolytes the limiting factor in these systems. Driven by the promising ionic conductivities of Na3PS4, here we explore the stability and viability of Na3PS4 as a solid electrolyte against metallic Na and compare it to that of Na-ß″-Al2O3 (sodium ß-alumina). As expected, Na-ß″-Al2O3 is stable against sodium, whereas Na3PS4 decomposes with an increasing overall resistance, making Na-ß″-Al2O3 the electrolyte of choice for protected sodium anodes and all-solid-state batteries.

8.
Nat Chem ; 8(5): 426-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27102676

RESUMEN

The discharging and charging of batteries require ion transfer across phase boundaries. In conventional lithium-ion batteries, Li(+) ions have to cross the liquid electrolyte and only need to pass the electrode interfaces. Future high-energy batteries may need to work as hybrids, and so serially combine a liquid electrolyte and a solid electrolyte to suppress unwanted redox shuttles. This adds new interfaces that might significantly decrease the cycling-rate capability. Here we show that the interface between a typical fast-ion-conducting solid electrolyte and a conventional liquid electrolyte is chemically unstable and forms a resistive solid-liquid electrolyte interphase (SLEI). Insights into the kinetics of this new type of interphase are obtained by impedance studies of a two-chamber cell. The chemistry of the SLEI, its growth with time and the influence of water impurities are examined by state-of-the-art surface analysis and depth profiling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA