RESUMEN
Per- and polyfluoroalkyl substances (PFAS), often referred to as "forever chemicals", are a class of man-made, extremely stable chemicals, which are widely used in industrial and commercial applications. Exposure to some PFAS is now known to be detrimental to human health. By virtue of PFAS long residence times, they are widely detected in the environment, including remote locations such as the Arctics, where the origin of the PFAS is poorly understood. It has been suggested that PFAS may be transported through contaminated waters, leading to accumulation in coastal areas, where they can be aerosolised via sea spray, thereby extending their geographical distribution far beyond their original source regions. The aim of this work is to investigate, for the first time, whether "forever chemicals" could be transported to areas considered to be pristine, far from coastal sites. This study was performed at the Amazonian Tall Tower Observatory (ATTO), a unique remote site situated in the middle of the Amazon rainforest, where a restricted PFAS, perfluorooctanoic acid (PFOA), was observed with concentrations reaching up to 2 pg/m3. A clear trend of increasing concentration with sampling height was observed and air masses from the south over Manaus had the highest concentrations. Atmospheric lifetime estimations, removal mechanisms supported by measurements at two heights (320 and 42 m above the rainforest), and concentration spikes indicated a long-range transport of PFOA to pristine Amazon rainforest. Potential sources, including industrial activities in urban areas, were explored, and historical fire management practices considered. This research presents the first measurements of PFAS in the atmosphere of Amazon rainforest. Remarkably, even in this remote natural environment, appreciable levels of PFAS can be detected. This study provides valuable insights into the long-range transport of the anthropogenic "forever chemical" into a remote natural ecosystem and should raise awareness of potential environmental implications.
Asunto(s)
Contaminantes Atmosféricos , Atmósfera , Monitoreo del Ambiente , Fluorocarburos , Contaminantes Atmosféricos/análisis , Fluorocarburos/análisis , Atmósfera/química , Brasil , Caprilatos/análisis , Bosque LluviosoRESUMEN
During durst storms, also biological material is transported from arid areas such as the Sahara Desert. In the present work, rain samples containing significant amounts of mineral dust have been collected in Granada during different red rain episodes. Biological features (bacteria, biofilm, pollen grain and fungal spore) as well as size-particle distribution and mineralogical composition were studied by SEM. Nanobacteria were observed for the first time in red rain samples. A preliminary metabarcoding analysis was performed on three red rain samples. Here, Bacillota made up 18 % and Pseudomonadota 23 % of the whole prokaryotic community. The fungal community was characterized by a high abundance of Ascomycota and, dependent on the origin, the presence of Chytridiomycota. By means of 16S rRNA sequencing, 18 cultivable microorganisms were identified. In general, members of the phyla Pseudomonadota and Bacillota made up the majority of taxa. Some species, such as Peribacillus frigoritolerans and Bacillus halotolerans were isolated during three different red rain episodes. Generally, red rain carries a wide variety of microorganisms, being their ecosystem and health effects largely unknown.
Asunto(s)
Polvo , Ecosistema , Polvo/análisis , España , ARN Ribosómico 16S/genética , Lluvia , África del NorteRESUMEN
The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.