Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 111(3): 713-730, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644998

RESUMEN

As sessile organisms, plants must adapt their physiology and developmental processes to cope with challenging environmental circumstances, such as the ongoing elevation in atmospheric carbon dioxide (CO2 ) levels. Nicotinamide adenine dinucleotide (NAD+ ) is a cornerstone of plant metabolism and plays an essential role in redox homeostasis. Given that plants impaired in NAD metabolism and transport often display growth defects, low seed production and disturbed stomatal development/movement, we hypothesized that subcellular NAD distribution could be a candidate for plants to exploit the effects of CO2 fertilization. We report that an efficient subcellular NAD+ distribution is required for the fecundity-promoting effects of elevated CO2 levels. Plants with reduced expression of either mitochondrial (NDT1 or NDT2) or peroxisomal (PXN) NAD+ transporter genes grown under elevated CO2 exhibited reduced total leaf area compared with the wild-type while PXN mutants also displayed reduced leaf number. NDT2 and PXN lines grown under elevated CO2 conditions displayed reduced rosette dry weight and lower photosynthetic rates coupled with reduced stomatal conductance. Interestingly, high CO2 doubled seed production and seed weight in the wild-type, whereas the mutants were less responsive to increases in CO2 levels during reproduction, producing far fewer seeds than the wild-type under both CO2 conditions. These data highlight the importance of mitochondrial and peroxisomal NAD+ uptake mediated by distinct NAD transporter proteins to modulate photosynthesis and seed production under high CO2 levels.


Asunto(s)
Dióxido de Carbono , NAD , Dióxido de Carbono/metabolismo , NAD/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Semillas/metabolismo
2.
Front Plant Sci ; 12: 756505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35116048

RESUMEN

Cleomaceae is closely related to Brassicaceae and includes C3, C3-C4, and C4 species. Thus, this family represents an interesting system for studying the evolution of the carbon concentrating mechanism. However, inadequate genetic information on Cleomaceae limits their research applications. Here, we characterized 22 Cleomaceae accessions [3 genera (Cleoserrata, Gynandropsis, and Tarenaya) and 11 species] in terms of genome size; molecular phylogeny; as well as anatomical, biochemical, and photosynthetic traits. We clustered the species into seven groups based on genome size. Interestingly, despite clear differences in genome size (2C, ranging from 0.55 to 1.3 pg) in Tarenaya spp., this variation was not consistent with phylogenetic grouping based on the internal transcribed spacer (ITS) marker, suggesting the occurrence of multiple polyploidy events within this genus. Moreover, only G. gynandra, which possesses a large nuclear genome, exhibited the C4 metabolism. Among the C3-like species, we observed intra- and interspecific variation in nuclear genome size as well as in biochemical, physiological, and anatomical traits. Furthermore, the C3-like species had increased venation density and bundle sheath cell size, compared to C4 species, which likely predisposed the former lineages to C4 photosynthesis. Accordingly, our findings demonstrate the potential of Cleomaceae, mainly members of Tarenaya, in offering novel insights into the evolution of C4 photosynthesis.

3.
Plant J ; 104(5): 1149-1168, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32996222

RESUMEN

Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , NAD/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Mutación , NAD/farmacología , Estomas de Plantas/metabolismo
4.
Biochem J ; 477(9): 1759-1777, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32329787

RESUMEN

A homolog of the mitochondrial succinate/fumarate carrier from yeast (Sfc1p) has been found in the Arabidopsis genome, named AtSFC1. The AtSFC1 gene was expressed in Escherichia coli, and the gene product was purified and reconstituted in liposomes. Its transport properties and kinetic parameters demonstrated that AtSFC1 transports citrate, isocitrate and aconitate and, to a lesser extent, succinate and fumarate. This carrier catalyzes a fast counter-exchange transport as well as a low uniport of substrates, exhibits a higher transport affinity for tricarboxylates than dicarboxylates, and is inhibited by pyridoxal 5'-phosphate and other inhibitors of mitochondrial carriers to various degrees. Gene expression analysis indicated that the AtSFC1 transcript is mainly present in heterotrophic tissues, and fusion with a green-fluorescent protein localized AtSFC1 to the mitochondria. Furthermore, 35S-AtSFC1 antisense lines were generated and characterized at metabolic and physiological levels in different organs and at various developmental stages. Lower expression of AtSFC1 reduced seed germination and impaired radicle growth, a phenotype that was related to reduced respiration rate. These findings demonstrate that AtSFC1 might be involved in storage oil mobilization at the early stages of seedling growth and in nitrogen assimilation in root tissue by catalyzing citrate/isocitrate or citrate/succinate exchanges.


Asunto(s)
Arabidopsis , Proteínas Portadoras , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Grasos/metabolismo , Fumaratos/metabolismo , Expresión Génica , Genes Fúngicos , Genes de Plantas , Cinética , Liposomas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Plantones/crecimiento & desarrollo , Succinatos/metabolismo , Ácidos Tricarboxílicos/metabolismo
5.
Plant Cell Physiol ; 61(5): 897-908, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32065636

RESUMEN

Despite the fundamental importance of nicotinamide adenine dinucleotide (NAD+) for metabolism, the physiological roles of NAD+ carriers in plants remain unclear. We previously characterized the Arabidopsis thaliana gene (At1g25380), named AtNDT2, encoding a protein located in the mitochondrial inner membrane, which imports NAD+ from the cytosol using ADP and AMP as counter-exchange substrates for NAD+. Here, we further investigated the physiological roles of NDT2, by isolating a T-DNA insertion line, generating an antisense line and characterizing these genotypes in detail. Reduced NDT2 expression affected reproductive phase by reducing total seed yield. In addition, reduced seed germination and retardation in seedling establishment were observed in the mutant lines. Moreover, remarkable changes in primary metabolism were observed in dry and germinated seeds and an increase in fatty acid levels was verified during seedling establishment. Furthermore, flowers and seedlings of NDT2 mutants displayed upregulation of de novo and salvage pathway genes encoding NAD+ biosynthesis enzymes, demonstrating the transcriptional control mediated by NDT2 activity over these genes. Taken together, our results suggest that NDT2 expression is fundamental for maintaining NAD+ balance amongst organelles that modulate metabolism, physiology and developmental processes of heterotrophic tissues.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , NAD/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Flores/fisiología , Genotipo , Procesos Heterotróficos , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Nucleótidos/metabolismo , Piridinas/metabolismo , Reproducción/fisiología
6.
Plant J ; 100(3): 487-504, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31278825

RESUMEN

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , NAD/metabolismo , Antiportadores/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas Fluorescentes Verdes , Homeostasis , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Insercional , Proteínas de Transporte de Nucleótidos , Peroxisomas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Almidón/metabolismo
7.
Plant J ; 61(3): 423-35, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19906043

RESUMEN

Uridine 5'-diphosphate (UDP)-glucose is transported into the lumen of the endoplasmic reticulum (ER), and the Arabidopsis nucleotide sugar transporter AtUTr1 has been proposed to play a role in this process; however, different lines of evidence suggest that another transporter(s) may also be involved. Here we show that AtUTr3 is involved in the transport of UDP-glucose and is located at the ER but also at the Golgi. Insertional mutants in AtUTr3 showed no obvious phenotype. Biochemical analysis in both AtUTr1 and AtUTr3 mutants indicates that uptake of UDP-glucose into the ER is mostly driven by these two transporters. Interestingly, the expression of AtUTr3 is induced by stimuli that trigger the unfolded protein response (UPR), a phenomenon also observed for AtUTr1, suggesting that both AtUTr1 and AtUTr3 are involved in supplying UDP-glucose into the ER lumen when misfolded proteins are accumulated. Disruption of both AtUTr1 and AtUTr3 causes lethality. Genetic analysis showed that the atutr1 atutr3 combination was not transmitted by pollen and was poorly transmitted by the ovules. Cell biology analysis indicates that knocking out both genes leads to abnormalities in both male and female germ line development. These results show that the nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the ER, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Polen/metabolismo , Uridina Difosfato/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Genotipo , Aparato de Golgi/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Polen/embriología , Polen/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA