Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39203416

RESUMEN

D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.

2.
Microb Cell Fact ; 23(1): 216, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080612

RESUMEN

BACKGROUND: D-psicose 3-epimerase (DPEase) is a potential catalytic enzyme for D-psicose production. D-psicose, also known as D-allulose, is a low-calorie sweetener that has gained considerable attention as a healthy alternative sweetener due to its notable physicochemical properties. This research focused on an in-depth investigation of the expression of the constructed DPEase gene from Agrobacterium tumefaciens in Escherichia coli for D-psicose synthesis. Experimentally, this research created the recombinant enzyme, explored the optimization of gene expression systems and protein purification strategies, investigated the enzymatic characterization, and then optimized the D-psicose production. Finally, the produced D-psicose syrup underwent acute toxicity evaluation to provide scientific evidence supporting its safety. RESULTS: The optimization of DPEase expression involved the utilization of Mn2+ as a cofactor, fine-tuning isopropyl ß-D-1-thiogalactopyranoside induction, and controlling the induction temperature. The purification process was strategically designed by a nickel column and an elution buffer containing 200 mM imidazole, resulting in purified DPEase with a notable 21.03-fold increase in specific activity compared to the crude extract. The optimum D-psicose conversion conditions were at pH 7.5 and 55 °C with a final concentration of 10 mM Mn2+ addition using purified DPEase to achieve the highest D-psicose concentration of 5.60% (w/v) using 25% (w/v) of fructose concentration with a conversion rate of 22.42%. Kinetic parameters of the purified DPEase were Vmax and Km values of 28.01 mM/min and 110 mM, respectively, which demonstrated the high substrate affinity and efficiency of DPEase conversion by the binding site of the fructose-DPEase-Mn2+ structure. Strategies for maintaining stability of DPEase activity were glycerol addition and storage at -20 °C. Based on the results from the acute toxicity study, there was no toxicity to rats, supporting the safety of the mixed D-fructose-D-psicose syrup produced using recombinant DPEase. CONCLUSIONS: These findings have direct and practical implications for the industrial-scale production of D-psicose, a valuable rare sugar with a broad range of applications in the food and pharmaceutical industries. This research should advance the understanding of DPEase biocatalysis and offers a roadmap for the successful scale-up production of rare sugars, opening new avenues for their utilization in various industrial processes.


Asunto(s)
Escherichia coli , Fructosa , Proteínas Recombinantes , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Fructosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Agrobacterium tumefaciens , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/aislamiento & purificación , Animales , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/genética , Ratas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Microb Cell Fact ; 22(1): 86, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120528

RESUMEN

BACKGROUND: Expression systems for lactic acid bacteria have been developed for metabolic engineering applications as well as for food-grade recombinant protein production. But the industrial applications of lactic acid bacteria as cell factories have been limited due to low biomass formation resulted in low efficiency of biomanufacturing process. Limosilactobacillus reuteri KUB-AC5 is a safe probiotic lactic acid bacterium that has been proven as a gut health enhancer, which could be developed as a mucosal delivery vehicle for vaccines or therapeutic proteins, or as expression host for cell factory applications. Similar to many lactic acid bacteria, its oxygen sensitivity is a key factor that limits cell growth and causes low biomass production. The aim of this study is to overcome the oxidative stress in L. reuteri KUB-AC5. Several genes involved in oxidative and anti-oxidative stress were investigated, and strain improvement for higher cell densities despite oxidative stress was performed using genetic engineering. RESULTS: An in-silico study showed that L. reuteri KUB-AC5 genome possesses an incomplete respiratory chain lacking four menaquinone biosynthesis genes as well as a complete biosynthesis pathway for the production of the precursor. The presence of an oxygen consuming enzyme, NADH oxidase (Nox), leads to high ROS formation in aerobic cultivation, resulting in strong growth reduction to approximately 25% compared to anaerobic cultivation. Recombinant strains expressing the ROS scavenging enzymes Mn-catalase and Mn-superoxide dismutase were successfully constructed using the pSIP expression system. The Mn-catalase and Mn-SOD-expressing strains produced activities of 873 U/ml and 1213 U/ml and could minimize the ROS formation in the cell, resulting in fourfold and sevenfold higher biomass formation, respectively. CONCLUSIONS: Expression of Mn-catalase and Mn-SOD in L. reuteri KUB-AC5 successfully reduced oxidative stress and enhanced growth. This finding could be applied for other lactic acid bacteria that are subject to oxidative stress and will be beneficial for applications of lactic acid bacteria for cell factory applications.


Asunto(s)
Limosilactobacillus reuteri , Probióticos , Limosilactobacillus reuteri/genética , Catalasa/metabolismo , Especies Reactivas de Oxígeno , Estrés Oxidativo , Oxígeno , Superóxido Dismutasa/metabolismo , Probióticos/metabolismo
4.
Microorganisms ; 9(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34361912

RESUMEN

In Lactococcus lactis and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of L. lactis and Leuconostoc mesenteroides, but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except L. mesenteroides). Lactiplantibacillus plantarum has only two genes (menA, menG) encoding enzymes in the biosynthetic pathway (out of eight), and Lentilactobacillus buchneri has only four (menA, menB, menE, and menG). We constructed knock-out strains of L. lactis defective in menA, menB, menE, and menG (encoding the last steps in the pathway) and complemented these by expression of the extant genes from Lactipl. plantarum and Lent. buchneri to verify their functionality. Three of the Lactipl. plantarum biosynthesis genes, lpmenA1, lpmenG1, and lpmenG2, as well as lbmenB and lbmenG from Lent. buchneri, reconstituted menaquinone production and respiratory growth in the deficient L. lactis strains when supplemented with heme. We then reconstituted the incomplete menaquinone biosynthesis pathway in Lactipl. plantarum by expressing six genes from L. lactis homologous to the missing genes in a synthetic operon with two inducible promoters. Higher biomass formation was observed in Lactipl. plantarum carrying this operon, with an OD600 increase from 3.0 to 5.0 upon induction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA