Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 40(1): 233-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21488512

RESUMEN

Transportation of poultry litter out of nutrient limited watersheds such as the Illinois River basin (eastern Oklahoma) is a logical solution for minimizing phosphorus (P) losses from soils to surface waters. Transportation costs are basedon mass of load and distance transported. This study investigated an alternative litter storage technique designed to promote carbon (C) degradation, thereby concentrating nutrients for the purpose of decreasing transportation costs through decreased mass. Poultry litter was stored in 0.90-Mg conical piles under semipermeable tarps and adjusted to 40% moisture content, tested with and without addition of alum (aluminum sulfate). additional study was conducted using 3.6-Mg piles under the same conditions, except tested with and without use of aeration pipes. Samples were analyzed before and after (8 wk) storage. Litter mass degradation (i.e., loss in mass due to organic matter decomposition) was estimated on the basis of changes in litter total P contents. Additional characterization included pH, total nutrients, moisture content, total C, and degree of humification. Litter storage significantly decreased litter mass (16 to 27%), concentrated nutrients such as P and potassium (K) and increased proportion of fulvic and humic acids. The addition of aeration pipes increased mass degradationrelative to piles without aeration pipes. Nitrogen volatilization losses were minimized with alum additions. Increases in P and K concentrations resulted in greater monetary value per unit mass compared with fresh litter. Such increases translate to increased litter shipping distance and cost savings of $17.2 million over 25 yr for litter movement out of eastern Oklahoma.


Asunto(s)
Pollos , Pisos y Cubiertas de Piso , Eliminación de Residuos/métodos , Suelo/química , Transportes , Animales , Vivienda para Animales , Oklahoma
2.
J Environ Qual ; 39(5): 1848-57, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21043291

RESUMEN

Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.


Asunto(s)
Estiércol , Nitrógeno/metabolismo , Aves de Corral , Animales , Secuencia de Bases , Cartilla de ADN , Hidrólisis , Reacción en Cadena de la Polimerasa , Urea/metabolismo
3.
J Environ Qual ; 39(4): 1478-85, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20830934

RESUMEN

Zeolite minerals are ideal for removing ammonium nitrogen (NH4(+)-N) from animal wastes, leachates, and industrial effluents. The objectives of this study were to compare NH4+ removal and kinetics among several commercially available zeolites under various conditions and determine if calorimetry could provide information regarding kinetics of NH4+ removal. Ammonium sorption onto potassium (K) saturated zeolites was compared using synthetic vs. natural swine effluent and with either traditional batch-shaken system or a "tea bag" approach in which zeolites were contained in a mesh sack and suspended in a solution of swine effluent. Ammonium sorption was measured at four retention times using a flow-through system, and the resulting heat response was measured using isothermal calorimetry. Ammonium removal was not significantly different in synthetic vs. natural swine effluent. Ammonium removal was lower in batch-stirred compared to batch-shaken systems, suggesting that diffusion between particles was rate-limiting in the former system. Flow-through cells possessing contact times > 100 s displayed greater NH4+ sorption than batch systems, suggesting that maintaining high NH4+ concentration in solution, removal of exchange products, and sufficient reaction time are critical to maximizing NH4+ removal by zeolites. Within 100 s after NH4+ addition, endothermic heat responses indicated that NH4(+)-K+ exchange had peaked; this was followed by significant heat rate reduction for 50 min. This confirmed findings of an initial fast NH4(+)-K+ exchange followed by a slower one and suggests the 100-s period of rapid reaction is an indicator of the minimum flow through retention time required to optimize NH4+ sorption to zeolites used in this study.


Asunto(s)
Nitrógeno/química , Compuestos de Amonio Cuaternario/química , Purificación del Agua/métodos , Agua/química , Zeolitas/química , Animales , Cinética , Estiércol , Porcinos , Contaminantes Químicos del Agua/química
4.
J Environ Qual ; 37(6): 2360-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18948490

RESUMEN

Microbial mineralization of urea and uric acid in poultry litter results in the production of ammonia, which can lead to decreased poultry performance, malodorous emissions, and loss of poultry litter value as a fertilizer. Despite the fact that this is a microbial process, little is known about how the microbial populations, especially ammonia-producing (ureolytic) organisms in poultry litter, respond to litter amendments such as aluminum sulfate (Al(2)(SO(4))(3).14H(2)O; alum). The goal of this study was to measure the temporal changes in total bacterial and fungal populations and urease-producing microorganisms in nontreated litter or litter treated with 10% alum. Quantitative real-time polymerase chain reaction was used to target the bacterial 16S rRNA gene, the fungal 18S rRNA gene, or the urease gene of bacterial and fungal ammonia producers in a poultry litter incubation study. Nontreated poultry litter had relatively high total (2.8 +/- 0.8 x 10(10) cells g(-1) litter) and ureolytic (2.8 +/- 1.3 x 10(8) cells g(-1) litter) bacterial populations. Alum treatment reduced the total bacterial population by 50% and bacterial urease producers by 90% within 4 wk. In contrast, at 16 wk after alum treatment, the fungal population was three orders of magnitude higher in alum-treated litter than in nontreated litter (3.5 +/- 0.8 x 10(7) cells g(-1) litter and 5.5 +/- 2.5 x 10(4) cells g(-1) litter, respectively). The decrease in pH produced by alum treatment is believed to inhibit bacterial populations and favor growth of fungi that may be responsible for the mineralization of organic nitrogen in alum-treated litters.


Asunto(s)
Compuestos de Alumbre/farmacología , Bacterias/efectos de los fármacos , Pollos , Pisos y Cubiertas de Piso , Amoníaco/metabolismo , Crianza de Animales Domésticos/métodos , Animales , Bacterias/metabolismo , Conservación de los Recursos Naturales , Hongos/efectos de los fármacos , Hongos/metabolismo , Vivienda para Animales , Estiércol/microbiología
5.
J Environ Qual ; 37(2): 469-76, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18268310

RESUMEN

Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.


Asunto(s)
Compuestos de Alumbre/química , Estiércol , Fosfatos/química , Fósforo/química , Ácido Fítico/química , Animales , Fraccionamiento Químico , Ácido Clorhídrico/química , Hidrólisis , Aves de Corral , Bicarbonato de Sodio/química , Hidróxido de Sodio/química , Suelo
6.
J Environ Qual ; 35(1): 172-82, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16391288

RESUMEN

Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application.


Asunto(s)
Compuestos de Alumbre/química , Heces , Fertilizantes , Aves de Corral , Zea mays/crecimiento & desarrollo , Animales , Fósforo/análisis , Lluvia , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA