Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37297548

RESUMEN

The speciation of volatile organic compounds (VOCs) emitted from personal care products (PCPs) is complex and contributes to poor air quality and health risks to users via the inhalation exposure pathway. Detailed VOC emission profiles were generated for 26 sunscreen products; consequently, variability was observed between products, even though they were all designed for the same purpose. Some were found to contain fragrance compounds not labelled on their ingredients list. Five contaminant VOCs were identified (benzene, toluene, ethylbenzene, o-xylene, and p-xylene); headspace sampling of an additional 18 randomly selected products indicated that ethanol originating from fossil petroleum was a potential source. The gas phase emission rates of the VOCs were quantified for 15 of the most commonly emitted species using SIFT-MS. A wide range of emission rates were observed between the products. Usage estimates were made based on the recommended dose per body surface area, for which the total mass of VOCs emitted from one full-body application dose was in the range of 1.49 × 103-4.52 × 103 mg and 1.35 × 102-4.11 × 102 mg for facial application (men aged 16+; children aged 2-4). Depending on age and sex, an estimated 9.8-30 mg of ethanol is inhaled from one facial application of sunscreen.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Humanos , Masculino , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Etanol , Exposición por Inhalación , Protectores Solares , Compuestos Orgánicos Volátiles/análisis , Femenino , Preescolar , Adolescente
2.
Anal Chim Acta ; 1239: 340700, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628710

RESUMEN

The behaviour and distribution of iodine in the environment are of significant interest in a range of scientific disciplines, from health, as iodine is an essential element for humans and animals, to climate and air quality, to geochemistry. Aquatic environments are the reservoir for iodine, where it exists in low concentrations as iodide, iodate and dissolved organic iodine and in which it undergoes redox reactions. The current measurement techniques for iodine species are typically time-consuming, subject to relatively poor precision and require specialist instrumentation including those that require mercury as an electrode. We present a new method for measuring iodine species, that is tailored towards lower dissolved organic carbon waters, such as seawater, rainwater and snow, using ion exchange chromatography (IC) with direct ultra-violet spectrophotometric detection of iodide and without the need for sample pre-concentration. Simple chemical amendments to the sample allow for the quantification of both iodate and dissolved organic iodine in addition to iodide. The developed IC method, which takes 16 min, was applied to contrasting samples that encompass a wide range of aqueous environments, from Arctic sea-ice snow (low concentrations) to coastal seawater (complex sample matrix). Linear calibrations are demonstrated for all matrices, using gravimetrically prepared potassium iodide standards. The detection limit for the iodide ion is 0.12 nM based on the standard deviation of the blank, while sample reproducibility is typically <2% at >8 nM and ∼4% at <8 nM. Since there is no environmental certified reference material for iodine species, the measurements made on seawater samples using this IC method were compared to those obtained using established analytical techniques; iodide voltammetry and iodate spectrophotometry. We calculated recoveries of 102 ± 16% (n = 107) for iodide and 116 ± 9% (n = 103) for iodate, the latter difference may be due to an underestimation of iodate by the spectrophotometric method. We further compared a chemical oxidation and reduction of the sample to an ultra-violet digestion to establish the total dissolved iodine content, the average recovery following chemical amendments was 98 ± 4% (n = 92). The new method represents a simple, efficient, green, precise and sensitive method for measuring dissolved speciated iodine in complex matrices.


Asunto(s)
Yodo , Animales , Humanos , Yodo/análisis , Yoduros/análisis , Yodatos/análisis , Nieve , Reproducibilidad de los Resultados , Agua de Mar/química , Espectrofotometría , Cromatografía por Intercambio Iónico
3.
Environ Sci Technol ; 55(11): 7365-7375, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34006107

RESUMEN

The life-critical matrices of air and water are among the most complex chemical mixtures that are ever encountered. Ultrahigh-resolution mass spectrometers, such as the Orbitrap, provide unprecedented analytical capabilities to probe the molecular composition of such matrices, but the extraction of non-targeted chemical information is impractical to perform via manual data processing. Automated non-targeted tools rapidly extract the chemical information of all detected compounds within a sample dataset. However, these methods have not been exploited in the environmental sciences. Here, we provide an automated and (for the first time) rigorously tested methodology for the non-targeted compositional analysis of environmental matrices using coupled liquid chromatography-mass spectrometric data. First, the robustness and reproducibility was tested using authentic standards, evaluating performance as a function of concentration, ionization potential, and sample complexity. The method was then used for the compositional analysis of particulate matter and surface waters collected from worldwide locations. The method detected >9600 compounds in the individual environmental samples, arising from critical pollutant sources, including carcinogenic industrial chemicals, pesticides, and pharmaceuticals among others. This methodology offers considerable advances in the environmental sciences, providing a more complete assessment of sample compositions while significantly increasing throughput.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Espectrometría de Masas , Plaguicidas/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Process Impacts ; 23(5): 699-713, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037627

RESUMEN

Volatile organic compounds (VOCs) are a key class of atmospheric emission released from highly complex petrochemical, transport and solvent sources both outdoors and indoors. This study established the concentrations and speciation of VOCs in 60 homes (204 individuals, 360 × 72 h samples, 40 species) in summer and winter, along with outdoor controls. Self-reported daily statistics were collected in each home on the use of cleaning, household and personal care products, all of which are known to release VOCs. Frequency of product use varied widely: deodorants: 2.9 uses home per day; sealant-mastics 0.02 uses home per day. The total concentration of VOCs indoors (range C2-C10) was highly variable between homes e.g. range 16.6-8150 µg m-3 in winter. Indoor concentrations of VOCs exceeded outdoor for 84% of households studied in summer and 100% of homes in winter. The most abundant VOCs found indoors in this study were n-butane (wintertime range: 1.5-4630 µg m-3), likely released as aerosol propellant, ethanol, acetone and propane. The cumulative use VOC-containing products over multiday timescales by occupants provided little predictive power to infer 72 hour averaged indoor concentrations. However, there was weak covariance between the cumulative usage of certain products and individual VOCs. From a domestic emissions perspective, reducing the use of hydrocarbon-based aerosol propellants indoors would likely have the largest impact.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Productos Domésticos , Humanos , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis
5.
Environ Sci Technol ; 54(20): 13228-13237, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32975119

RESUMEN

The influence of organic compounds on iodine (I2) emissions from the O3 + I- reaction at the sea surface was investigated in laboratory and modeling studies using artificial solutions, natural subsurface seawater (SSW), and, for the first time, samples of the surface microlayer (SML). Gas-phase I2 was measured directly above the surface of liquid samples using broadband cavity enhanced absorption spectroscopy. I2 emissions were consistently lower for artificial seawater (AS) than buffered potassium iodide (KI) solutions. Natural seawater samples showed the strongest reduction of I2 emissions compared to artificial solutions with equivalent [I-], and the reduction was more pronounced over SML than SSW. Emissions of volatile organic iodine (VOI) were highest from SML samples but remained a negligible fraction (<1%) of the total iodine flux. Therefore, reduced iodine emissions from natural seawater cannot be explained by chemical losses of I2 or hypoiodous acid (HOI), leading to VOI. An interfacial model explains this reduction by increased solubility of the I2 product in the organic-rich interfacial layer of seawater. Our results highlight the importance of using environmentally representative concentrations in studies of the O3 + I- reaction and demonstrate the influence the SML exerts on emissions of iodine and potentially other volatile species.


Asunto(s)
Yodo , Yoduros , Agua de Mar
6.
Environ Sci Process Impacts ; 19(4): 528-537, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28224154

RESUMEN

The abundance of volatile organic compounds (VOCs) found in homes depends on many factors such as emissions, ventilation and the oxidative environment and these are evolving over time, reflecting changes in chemical use, behaviour and building design/materials. The concentrations of VOCs in 25 UK homes of varying ages, design and occupancy were quantified using continuous indoor air sampling over five days. Air was collected through low flow (1 mL min-1) constant flow restrictors into evacuated 6 L internally silica-treated canisters until the canisters reached atmospheric pressure. This was followed by thermal desorption-gas chromatography and high mass accuracy time-of-flight mass spectrometry (TD-GC-TOF/MS). A fully quantitative analysis was performed on the eight most abundant hydrocarbon-based VOCs found. Despite differences in building characteristics and occupant numbers 94% of the homes had d-limonene or α-pinene as the most abundant VOCs. The variability seen across the 25 homes in concentrations of monoterpenes indoors was considerably greater than that of species such as isoprene, benzene, toluene and xylenes. The variance in VOCs indoors appeared to be strongly influenced by occupant activities such as cleaning with 5-day average concentrations of d-limonene ranging from 18 µg m-3 to over 1400 µg m-3, a peak domestic value that is possibly the highest yet reported in the literature.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monoterpenos/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Reino Unido
7.
Elife ; 52016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27668515

RESUMEN

Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

8.
Environ Sci Technol ; 49(22): 13168-78, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26473383

RESUMEN

Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.


Asunto(s)
Hidrocarburos Aromáticos/química , Luz , Material Particulado/análisis , Derivados de Alilbenceno , Anisoles/química , Atmósfera/química , Humedad , Nitrofenoles/análisis , Oxidantes/química , Oxidación-Reducción/efectos de la radiación , Temperatura , Factores de Tiempo , Tolueno/química , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA