Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 134946, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38941832

RESUMEN

Fluoroquinolone antibiotics (FQs) have been used worldwide due to their extended antimicrobial spectrum. However, the overuse of FQs leads to frequent detection in the environment and cannot be efficiently removed. Microalgae-based constructed wetland systems have been proven to be a relatively proper method to treat FQs, mainly by microalgae, plants, microorganisms, and sediments. To improve the removal efficiency of microalgae-constructed wetland, a systematic molecular design, screening, functional, and risk evaluation method was developed using three-dimensional quantitative structure-activity relationship models, molecular dynamics simulation, molecular docking, and TOPKAT approaches. Five designed ciprofloxacin alternatives with improved bactericidal effects and lower human health risks were found to be more easily degraded by microalgae (16.11-167.88 %), plants (6.72-58.86 %), microorganisms (9.10-15.02 %), and sediments (435.83 %-1763.51 %) compared with ciprofloxacin. According to the mechanism analysis, the removal effect of the FQs can be affected via changes in the number, bond energy, and molecular descriptors of favorable and unfavorable amino acids. To the best of our knowledge, this is the first comprehensive study of improving the microalgae, plants, microorganisms, and sediment removal efficiency of FQs in constructed wetlands, which provides theoretical support for the treatment of FQ pollution.


Asunto(s)
Antibacterianos , Fluoroquinolonas , Microalgas , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua , Humedales , Microalgas/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Antibacterianos/química , Fluoroquinolonas/química , Biodegradación Ambiental , Simulación del Acoplamiento Molecular , Simulación por Computador , Simulación de Dinámica Molecular , Ciprofloxacina/química , Sedimentos Geológicos/microbiología
2.
Small ; : e2401429, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808805

RESUMEN

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

3.
J Hazard Mater ; 460: 132452, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683346

RESUMEN

In this study, we predicted the environmental fate of amide herbicides (AHs) using the EQC (EQuilibrium Criterion) model. We found that the soil phase is the main reservoir of AHs in the environment. Second, a toxicokinetic prediction indicated that butachlor have a low human health risk, while the alachlor, acetochlor, metolachlor, napropamide, and propanil are all uncertain. To address the environmental and human-health-related threats posed by AHs, 27 new proteins/enzymes that easily absorb, degrade, and mineralize AHs were designed. Compared with the target protein/enzyme, the comprehensive evaluation value of the new proteins/enzymes increased significantly: the absorption protein increased by 20.29-113.49%; the degradation enzyme increased by 151.26-425.22%; and the mineralization enzyme increased by 23.70-52.16%. Further experiments revealed that the remediating effect of 13 new proteins/enzymes could be significantly enhanced to facilitate their applicability under real environmental conditions. The hydrophobic interactions, van der Waals forces, and polar solvation are the key factors influencing plant-microorganism remediation. Finally, the simulations revealed that appropriate consumption of kiwifruit or simultaneous consumption of ginseng, carrot, and spinach, and avoiding the simultaneous consumption of maize and carrot/spinach are the most effective means reduce the risk of exhibiting AH-linked toxicity.


Asunto(s)
Herbicidas , Panax , Propanil , Humanos , Herbicidas/toxicidad , Amidas , Frutas
4.
World J Microbiol Biotechnol ; 39(8): 214, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256388

RESUMEN

Studying the straw lignocellulose strengthening mechanism during simultaneous degradation has important practical significance for improving resource utilization and reducing environmental pollution. In this paper, the degradation ability of four straw lignocellulose-degrading enzymes was evaluated by molecular docking and molecular dynamics. Using the significantly binds to straw lignocellulose-degrading enzyme as a template, a multifunctional lignocellulose-degrading enzyme 3CBH-1KS5-4XQD-1B85 was constructed based on amino acid recombination and homologous modeling. Five efficient degrading enzymes (3CBH-1, 3CBH-2, 3CBH-3, 3CBH-4, and 3CBH-5) were designed by site-directed mutagenesis of 3CBH-1KS5-4XQD-1B85 amino acid at position 346. Molecular dynamics showed that the degradation ability of 3CBH-1 was significant and it was 1.45 times higher than 3CBH-1KS5-4XQD-1B85. Moreover, the mechanism of enhanced degradability and the stability of the enzymes were explored. With the aid of Taguchi experiments, the suitable external environment for degrading straw was determined. In the presence of inhibitors (organic acids and phenolic compounds), the binding energy of 3CBH-1 (238.46 ± 30.96 kJ/mol) is 36.42% higher than that of 3CBH-1KS5-4XQD-1B85 (174.79 ± 20.35 kJ/mol) without external environmental stimulation. Based on homology modeling, this paper constructed a site-directed mutagenesis scheme of multifunctional enzymes, and the aim was to obtain multifunctional and efficient straw lignocellulose-degrading enzymes through protein engineering, which provided a feasible scheme for straw biodegradation.


Asunto(s)
Simulación de Dinámica Molecular , Enzimas Multifuncionales , Enzimas Multifuncionales/metabolismo , Simulación del Acoplamiento Molecular , Lignina/metabolismo , Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA