Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
1.
Future Oncol ; : 1-8, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268928

RESUMEN

Aim: To develop and validate a T2-weighted-fluid attenuated inversion recovery (T2-FLAIR) images-based radiomics model for predicting early postoperative recurrence (within 1 year) in patients with low-grade gliomas (LGGs).Methods: A retrospective analysis was performed by collecting clinical, pathological and magnetic resonance imaging (MRI) data from patients with LGG between 2017 and 2022. Regions of interest were delineated and radiomic features were extracted from T2-FLAIR images using 3D-Slicer software. To minimize redundant features, the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was used. Patients were categorized into two groups based on recurrence status: the recurrence group (RG) and the non-recurrence group (NRG). Radiomic features were used to develop models using three machine learning approaches: logistic regression (LR), random forest (RF) and support vector machine (SVM). The performance of the radiomic features was validated using fivefold cross-validation.Results: After rigorous screening, 105 patients met the inclusion criteria, and five radiomic features were identified. After 5-folds cross-validation, the average areas under the curves for LR, RF and SVM were 0.813, 0.741 and 0.772, respectively.Conclusion: T2-FLAIR-based radiomic features effectively predicted early recurrence in postoperative LGGs.


[Box: see text].

2.
IEEE Trans Image Process ; 33: 5073-5085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39250370

RESUMEN

Recently, one-stream trackers have achieved parallel feature extraction and relation modeling through the exploitation of Transformer-based architectures. This design greatly improves the performance of trackers. However, as one-stream trackers often overlook crucial tracking cues beyond the template, they prone to give unsatisfactory results against complex tracking scenarios. To tackle these challenges, we propose a multi-cue single-stream tracker, dubbed MCTrack here, which seamlessly integrates template information, historical trajectory, historical frame, and the search region for synchronized feature extraction and relation modeling. To achieve this, we employ two types of encoders to convert the template, historical frames, search region, and historical trajectory into tokens, which are then collectively fed into a Transformer architecture. To distill temporal and spatial cues, we introduce a novel adaptive update mechanism, which incorporates a thresholding component and a local multi-peak component to filter out less accurate and overly disturbed tracking cues. Empirically, MCTrack achieves leading performance on mainstream benchmark datasets, surpassing the most advanced SeqTrack by 2.0% in terms of the AO metric on GOT-10k. The code is available at https://github.com/wsumel/MCTrack.

3.
Cell Regen ; 13(1): 17, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269631

RESUMEN

Endogenous retroviruses (ERVs), once thought to be mere remnants of ancient viral integrations in the mammalian genome, are now recognized for their critical roles in various physiological processes, including embryonic development, innate immunity, and tumorigenesis. Their impact on host organisms is significant driver of evolutionary changes, offering insight into evolutionary mechanisms. In our study, we explored the functionality of ERVs by examining single-cell transcriptomic profiles from human embryonic stem cells and urine cells. This led to the discovery of a unique ERVH48-1 expression pattern between these cell types. Additionally, somatic cell reprogramming efficacy was enhanced when ERVH48-1 was overexpressed in a urine cell-reprogramming system. Induced pluripotent stem cells (iPSCs) generated with ERVH48-1 overexpression recapitulated the traits of those produced by traditional reprogramming approaches, and the resulting iPSCs demonstrated the capability to differentiate into all three germ layers in vitro. Our research elucidated the role of ERVs in somatic cell reprogramming.

5.
PLoS One ; 19(8): e0309443, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39186501

RESUMEN

In Northwest China, the highway infrastructure often faces challenges due to the widespread presence of subgrade soil. This soil undergoes significant changes in performance under cyclic loading and freeze-thaw cycles. To effectively design and construct highways in these regions, it is crucial to understand the impact of various factors on the deformation characteristics and mechanical properties of subgrade soil. This study aims to investigate the influence of freeze-thaw cycles, water content, confining pressure, and loading rate on the deformation behavior and mechanical properties of subgrade soil under cyclic loading conditions. Experimental tests were conducted to analyze the deformation characteristics and mechanical properties of the subgrade soil. The test results revealed the following: 1) Dynamic loading leads to a noticeable decrease in the strength of subgrade soil, resulting in a softening effect on the stress-strain curve. The cumulative strain of the soil is positively correlated with the number of freeze-thaw cycles and water content, while negatively correlated with confining pressure. The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. These findings provide valuable insights for the design and construction of highways in seasonal frozen areas. They also offer guidance for preventing and mitigating subgrade freeze-thaw issues in the future.


Asunto(s)
Estaciones del Año , Suelo , Suelo/química , China , Agua , Congelación , Estrés Mecánico , Presión
6.
Actas Esp Psiquiatr ; 52(4): 464-473, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129687

RESUMEN

BACKGROUND: Schizophrenia is associated with significant cognitive impairment. However, the pathophysiological mechanisms underlying cognitive dysfunction in schizophrenia remain unclear. Based on the latest concept of cognition, immunoinflammatory factors and structural magnetic resonance imaging (sMRI) features of the brain are considered markers of schizophrenia. This study explored the correlations between cognitive function and immunoinflammatory factors and sMRI in primary schizophrenia patients. METHODS: Non-interventional cross-sectional study was conducted, including 21 patients with primary schizophrenia, who were identified based on the Diagnostic and Statistical Manual, Fifth Edition (DSM-V) and grouped under the observation group. Thirty healthy volunteers with age, gender, hand dominance, and education duration matched with those of the primary schizophrenia patients were recruited to the control group. All subjects underwent sMRI examination. MATRICS consensus cognitive battery (MCCB) was employed to assess the cognitive functions among patients with primary schizophrenia. The levels of serum amyloid A (SAA), monocyte chemoattractant protein 1 (MCP-1), and chitinase-3-like protein 1 (YKL-40) were measured by means of enzyme-linked immunosorbent assay (ELISA). Pearson's correlation analysis was carried out to analyze the correlation between immunoinflammatory factor levels and cognitive functions as well as brain sMRI features. RESULTS: The scores for all MCCB items and the total score for the observation group were apparently lower than those for the control group (p < 0.001), while the YKL-40 and SAA levels were notably higher in the observation group (t = 3.406, p < 0.05; t = 5.656, p < 0.001). Compared to the control group, the observation group exhibited reduced volumes of left and right insular lobes, left and right anterior cingulate cortexes, left and right hippocampi, right parahippocampal gyrus, right amygdala, left inferior occipital lobe, left superior temporal lobe, left temporal pole, and left middle and inferior temporal lobes (p < 0.001). The levels of YKL-40 and SAA were both negatively correlated with MCCB score (r = -0.3668, p = 0.004; r = -0.8495, p < 0.001). The volumes of right insular lobe, left and right anterior cingulate cortexes, right parahippocampal gyrus, right amygdala, and gray matter in left middle temporal lobe were all negatively correlated with the levels of YKL-40 and SAA (p < 0.05). CONCLUSION: Cognitive impairment in patients with primary schizophrenia is associated with increased serum SAA and YKL-40 levels and decreased gray matter volume.


Asunto(s)
Encéfalo , Cognición , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/sangre , Esquizofrenia/diagnóstico por imagen , Masculino , Femenino , Estudios Transversales , Adulto , Cognición/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Proteína 1 Similar a Quitinasa-3/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Persona de Mediana Edad , Proteína Amiloide A Sérica/metabolismo , Estudios de Casos y Controles
7.
Cell Stem Cell ; 31(9): 1298-1314.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146934

RESUMEN

Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/ß-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/ß-catenin signaling and cell type commitment in somatic development.


Asunto(s)
Diferenciación Celular , Retrovirus Endógenos , Proteínas de la Membrana , Miocitos Cardíacos , Vía de Señalización Wnt , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Retrovirus Endógenos/metabolismo , Retrovirus Endógenos/genética , Animales , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Primates , Células HEK293 , Mesodermo/metabolismo
8.
PLoS One ; 19(8): e0306984, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39116082

RESUMEN

In this study, phase change materials (PCMs) were innovatively incorporated into hybrid fiber concrete. The properties of PCMs, which absorb and release heat during phase transitions, enable the concrete to actively respond to complex and varying temperature environments. This integration reduces the internal temperature differentials within the concrete, thereby preventing temperature-induced cracks in deep wellbore structures. Through the temperature control model test of the frozen shaft wall, it can be seen that the hybrid fiber phase change concrete (HFPCC) significantly reduces the internal temperature difference, and the maximum temperature difference along the radial direction is 35.84% lower than that of benchmark concrete (BC). The numerical simulation results indicate that a moderate phase transition temperature should be selected in engineering. The phase change temperature should not be close to the ambient temperature and peak temperature. The peak temperature can be reduced by 9.32% and the maximum radial temperature difference can be reduced by 30.89% by selecting an appropriate phase change temperature. The peak temperature and radial maximum temperature difference are both proportional to the latent heat of phase change. The temperature control performance of phase change concrete can be further improved by increasing the latent heat of phase change materials.


Asunto(s)
Materiales de Construcción , Transición de Fase , Congelación , Modelos Teóricos , Ensayo de Materiales , Temperatura
9.
PLoS Pathog ; 20(8): e1012444, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39173055

RESUMEN

The Ebola virus (EBOV) has emerged as a significant global health concern, notably during the 2013-2016 outbreak in West Africa. Despite the clinical approval of two EBOV antibody drugs, there is an urgent need for more diverse and effective antiviral drugs, along with comprehensive understanding of viral-host interactions. In this study, we harnessed a biologically contained EBOVΔVP30-EGFP cell culture model which could recapitulate the entire viral life cycle, to conduct a genome-wide CRISPR/Cas9 screen. Through this, we identified PIK3C3 (phosphatidylinositide 3-kinase) and SLC39A9 (zinc transporter) as crucial host factors for EBOV infection. Genetic depletion of SLC39A9 and PIK3C3 lead to reduction of EBOV entry, but not impact viral genome replication, suggesting that SLC39A9 and PIK3C3 act as entry factors, facilitating viral entry into host cells. Moreover, PIK3C3 kinase activity is indispensable for the internalization of EBOV virions, presumably through the regulation of endocytic and autophagic membrane traffic, which has been previously recognized as essential for EBOV internalization. Notably, our study demonstrated that PIK3C3 kinase inhibitor could effectively block EBOV infection, underscoring PIK3C3 as a promising drug target. Furthermore, biochemical analysis showed that recombinant SLC39A9 protein could directly bind viral GP protein, which further promotes the interaction of viral GP protein with cellular receptor NPC1. These findings suggests that SLC39A9 plays dual roles in EBOV entry. Initially, it serves as an attachment factor during the early entry phase by engaging with the viral GP protein. Subsequently, SLC39A9 functions an adaptor protein, facilitating the interaction between virions and the NPC1 receptor during the late entry phase, prior to cathepsin cleavage on the viral GP. In summary, this study offers novel insights into virus-host interactions, contributing valuable information for the development of new therapies against EBOV infection.


Asunto(s)
Sistemas CRISPR-Cas , Ebolavirus , Fiebre Hemorrágica Ebola , Internalización del Virus , Animales , Humanos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Ebolavirus/genética , Ebolavirus/fisiología , Ebolavirus/metabolismo , Células HEK293 , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/genética , Replicación Viral
10.
Small ; : e2406518, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183518

RESUMEN

The ability to manufacture 3D metallic architectures with microscale resolution is greatly pursued because of their diverse applications in microelectromechanical systems (MEMS) including microelectronics, mechanical metamaterials, and biomedical devices. However, the well-developed photolithography and emerging metal additive manufacturing technologies have limited abilities in manufacturing micro-scaled metallic structures with freeform 3D geometries. Here, for the first time, the high-fidelity fabrication of arbitrary metallic motifs with sub-10 µm resolution is achieved by employing an embedded-writing embedded-sintering (EWES) process. A paraffin wax-based supporting matrix with high thermal stability is developed, which permits the printed silver nanoparticle ink to be pre-sintered at 175 °C to form metallic green bodies. Via carefully regulating the matrix components, the printing resolution is tuned down to ≈7 µm. The green bodies are then embedded in a supporting salt bath and further sintered to realize freeform 3D silver motifs with great structure fidelity. 3D printing of various micro-scaled silver architectures is demonstrated such as micro-spring arrays, BCC lattices, horn antenna, and rotatable windmills. This method can be extended to the high-fidelity 3D printing of other metals and metal oxides which require high-temperature sintering, providing the pathways toward the design and fabrication of 3D MEMS with complex geometries and functions.

11.
Front Microbiol ; 15: 1448885, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086649

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2021.757556.].

12.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101480

RESUMEN

Increased atmospheric nitrogen (N) deposition significantly disturbs ecosystem N cycle. Although foliar interception and uptake of N deposition can provide an important alternative N supply to forest ecosystems, the mechanisms regulating foliar N uptake from wet deposition are not fully understood. Here, we selected 19 woody species with a wide range of plant traits from different functional groups and conducted a 15N isotope labelling experiment through brushing 15NH4 + and 15NO3 - solution on canopy leaves. Our findings demonstrate that leaves can directly absorb N from wet deposition within a few hours. The average leaf 15N recoveries were 10% and 28% under 15NH4 + and 15NO3 - treatments across species, respectively, while twig N recoveries were only 1%-7% of leaf N recoveries. Differences in foliar N uptake efficiency among species were closely associated with leaf traits but were little influenced by meteorological conditions or soil nutrient status. Specifically, plants with higher leaf N concentration, larger specific leaf area and lower wax concentration exhibited higher leaf N recovery. Our results indicated that tree canopies could directly absorb N from atmospheric deposition. We highlight the critical role of leaf traits in determining canopy foliar N uptake, which may consequently influence plant competition under elevated N deposition.

13.
Front Pharmacol ; 15: 1423884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108758

RESUMEN

Background: Fu-zi decoction (FZD) has a long history of application for treating Rheumatoid arthritis (RA) as a classic formulation. However, its underlying mechanisms have not been fully elucidated. This study aimed to decipher the potential mechanism of FZD in treating RA, with a specific focus on receptor activator of nuclear factor κB/receptor activator of nuclear factor κB ligand (RANK/RANKL) signaling pathway. Methods: The impact of FZD on RA was investigated in collagen-induced arthritis rats (CIA), and the underlying mechanism was investigated in an osteoclast differentiation cell model. In vivo, the antiarthritic effect of FZD at various doses (2.3, 4.6, 9.2 g/kg/day) was evaluated by arthritis index score, paw volume, toe thickness and histopathological examination of inflamed joints. Additionally, the ankle joint tissues were determined with micro-CT and safranin O fast green staining to evaluate synovial hyperplasia and articular cartilage damage. In vitro, osteoclast differentiation and maturation were evaluated by TRAP staining in RANKL-induced bone marrow mononuclear cells. The levels of pro- and anti-inflammatory cytokines as well as RANKL and OPG were evaluated by ELISA kits. In addition, Western blotting was used to investigate the effect of FZD on RANK/RANKL pathway activation both in vivo and in vitro. Results: FZD significantly diminished the arthritis index score, paw volume, toe thickness and weigh loss in CIA rats, alleviated the pathological joint alterations. Consistent with in vivo results, FZD markedly inhibited RANKL-induced osteoclast differentiation by decreasing osteoclast numbers in a dose-dependent manner. Moreover, FZD decreased the levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, while increasing anti-inflammatory cytokine IL-10 level both in serum and culture supernatants. Treatment with FZD significantly reduced serum RANKL levels, increased OPG levels, and decreased the RANKL/OPG ratio. In both in vivo and in vitro settings, FZD downregulated the protein expressions of RANK, RANKL, and c-Fos, while elevating OPG levels, further decreasing the RANKL/OPG ratio. Conclusion: In conclusion, FZD exerts a therapeutic effect in CIA rats by inhibiting RANK/RANKL-mediated osteoclast differentiation, which suggested that FZD is a promising treatment for RA.

14.
Nanomicro Lett ; 16(1): 264, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120835

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.

16.
Front Med (Lausanne) ; 11: 1372091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962734

RESUMEN

Introduction: Microaneurysms serve as early signs of diabetic retinopathy, and their accurate detection is critical for effective treatment. Due to their low contrast and similarity to retinal vessels, distinguishing microaneurysms from background noise and retinal vessels in fluorescein fundus angiography (FFA) images poses a significant challenge. Methods: We present a model for automatic detection of microaneurysms. FFA images were pre-processed using Top-hat transformation, Gray-stretching, and Gaussian filter techniques to eliminate noise. The candidate microaneurysms were coarsely segmented using an improved matched filter algorithm. Real microaneurysms were segmented by a morphological strategy. To evaluate the segmentation performance, our proposed model was compared against other models, including Otsu's method, Region Growing, Global Threshold, Matched Filter, Fuzzy c-means, and K-means, using both self-constructed and publicly available datasets. Performance metrics such as accuracy, sensitivity, specificity, positive predictive value, and intersection-over-union were calculated. Results: The proposed model outperforms other models in terms of accuracy, sensitivity, specificity, positive predictive value, and intersection-over-union. The segmentation results obtained with our model closely align with benchmark standard. Our model demonstrates significant advantages for microaneurysm segmentation in FFA images and holds promise for clinical application in the diagnosis of diabetic retinopathy. Conclusion: The proposed model offers a robust and accurate approach to microaneurysm detection, outperforming existing methods and demonstrating potential for clinical application in the effective treatment of diabetic retinopathy.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38996753

RESUMEN

Metalloproteins binding with trace elements play a crucial role in biological processes and on the contrary, those binding with exogenous heavy metals have adverse effects. However, the methods for rapid, high sensitivity and simultaneous analysis of these metalloproteins are still lacking. In this study, a fast method for simultaneously determination of both essential and toxic metal-containing proteins was developed by coupling size exclusion chromatography (SEC) with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). After optimization of the separation and detection conditions, seven metalloproteins with different molecular weight (from 16.0 to 443.0 kDa) were successfully separated within 10 min and the proteins containing iron (Fe), copper (Cu), zinc (Zn), iodine (I) and lead (Pb) elements could be simultaneously detected with the use of oxygen as the collision gas in ICP-MS/MS. Accordingly, the linear relationship between log molecular weight and retention time was established to estimate the molecular weight of unknown proteins. Thus, the trace metal and toxic metal containing proteins could be detected in a single run with high sensitivity (detection limits in the range of 0.0020-2.5 µg/mL) and good repeatability (relative standard deviations lower than 4.5 %). This method was then successfully used to analyze metal (e.g., Pb, Zn, Cu and Fe) binding proteins in the blood of Pb-intoxicated patients, and the results showed a negative correlation between the contents of zinc and lead binding proteins, which was identified to contain hemoglobin subunit. In summary, this work provided a rapid and sensitive tool for screening metal containing proteins in large number of biological samples.


Asunto(s)
Cromatografía en Gel , Límite de Detección , Metaloproteínas , Espectrometría de Masas en Tándem , Cromatografía en Gel/métodos , Espectrometría de Masas en Tándem/métodos , Humanos , Reproducibilidad de los Resultados , Metaloproteínas/sangre , Metaloproteínas/química , Metaloproteínas/análisis , Modelos Lineales , Metales Pesados/sangre , Metales Pesados/análisis , Metales Pesados/química , Animales
18.
Nat Commun ; 15(1): 6179, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039089

RESUMEN

Polymer materials suffer mechano-oxidative deterioration or degradation in the presence of molecular oxygen and mechanical forces. In contrast, aerobic biological activities combined with mechanical stimulus promote tissue regeneration and repair in various organs. A synthetic approach in which molecular oxygen and mechanical energy synergistically initiate polymerization will afford similar robustness in polymeric materials. Herein, aerobic mechanochemical reversible-deactivation radical polymerization was developed by the design of an organic mechano-labile initiator which converts oxygen into activators in response to ball milling, enabling the reaction to proceed in the air with low-energy input, operative simplicity, and the avoidance of potentially harmful organic solvents. In addition, this approach not only complements the existing methods to access well-defined polymers but also has been successfully employed for the controlled polymerization of (meth)acrylates, styrenic monomers and solid acrylamides as well as the synthesis of polymer/perovskite hybrids without solvent at room temperature which are inaccessible by other means.

19.
Microorganisms ; 12(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39065241

RESUMEN

Cotton is highly sensitive to potassium, and Xinjiang, China's leading cotton-producing region, faces a severe challenge due to reduced soil potassium availability. Biofertilizers, particularly potassium-solubilizing rhizobacteria (KSR), convert insoluble potassium into plant-usable forms, offering a sustainable solution for evergreen agriculture. This study isolated and characterized KSR from cotton, elucidated their potassium solubilization mechanisms, and evaluated the effects of inoculating KSR strains on cotton seedlings. Twenty-three KSR strains were isolated from cotton rhizosphere soil using modified Aleksandrov medium. Their solubilizing capacities were assessed in a liquid medium. Strain A10 exhibited the highest potassium solubilization capacity (21.8 ppm) by secreting organic acids such as lactic, citric, acetic, and succinic acid, lowering the pH and facilitating potassium release. A growth curve analysis and potassium solubilization tests of A10 under alkali stress showed its vigorous growth and maintained solubilization ability at pH 8-9, with significant inhibition at pH 10. Furthermore, 16S rRNA sequencing identified strain A10 as Pseudomonas aeruginosa. Greenhouse pot experiments showed that inoculating cotton plants with strain A10 significantly increased plant height and promoted root growth. This inoculation also enhanced dry biomass accumulation in both the aerial parts and root systems of the plants, while reducing the root-shoot ratio. These results suggest that Pseudomonas aeruginosa A10 has potential as a biofertilizer, offering a new strategy for sustainable agriculture.

20.
J Sci Food Agric ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082082

RESUMEN

BACKGROUND: Xanthohumol is an isopentadienyl flavonoid in hops, which have several pharmacological effects. However, due to the poor bioavailability of xanthohumol, it cannot be widely used. RESULT: In this study, solvent extraction combined with preparative liquid chromatography was used to separate and purify xanthohumol in hop residue. And the purity, yield and recovery of xanthohumol was 983.0 ± 2.1 g kg-1, 921.61 ± 5.65 g kg-1, and 5.41 ± 0.07 g kg-1, respectively. Response surface methodology optimization revealed that 216.75 g kg-1 ethyl oleate, 574.1 g kg-1 polyoxyl-35 castor oil (EL35) and 209.15 g kg-1 polyethylene glycol 200 (PEG200) produced the xanthohumol nanoemulsion with a loading capacity of 85.40 ± 0.33 g kg-1, mean droplet diameter of 42.35 ± 0.06 nm, and zeta potential of -21.78 ± 0.18 mV. CONCLUSION: Xanthohumol nanoemulsion has better relative stability. The relative oral bioavailability of xanthohumol nanoemulsion was increased by 1.76 times. These results provide a theoretical basis for the application of nanoemulsion containing xanthohumol in food and pharmaceutical industry. © 2024 Society of Chemical Industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA