Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143260, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236916

RESUMEN

Global climate change is a major trigger of unexpected temperature fluctuations. The impacts of marine heatwaves (MHWs) and nano-titanium dioxide (nano-TiO2) on marine organisms have been extensively investigated. However, the potential mechanisms underlying their interactive effects on physiological processes and metabolism remain poorly understood, especially regarding periodic MHWs in real-world conditions. In this study, the effects of nano-TiO2 (at concentrations of 0, 25, and 250 µg/L) and periodic MHWs on the condition index (CI) and underlying metabolic mechanisms were investigated in mussels (Mytilus coruscus). The results showed that mussels try to upregulate their respiration rate (RR) to enhance aerobic metabolism (indicated by elevated succinate dehydrogenase) under short-term nano-TiO2 exposure. However, even at ambient concentration (25 µg/L), prolonged nano-TiO2 exposure inhibited ingestion ability (decreased clearance rate) and glycolysis (inhibited pyruvate kinase, hexokinase, and phosphofructokinase activities), which led to an insufficient energy supply (decreased triglyceride, albumin, and ATP contents). Repeated thermal scenarios caused more severe physiological damage, demonstrating that mussels are fragile to periodic MHWs. MHWs decreased the zeta potential of the nano-TiO2 particles but increased the hydrodynamic diameter. Additionally, exposure to nano-TiO2 and periodic MHWs further affected aerobic respiration (inhibited lactate dehydrogenase and succinate dehydrogenase activities), metabolism (decreased RR, activities of respiratory metabolism-related enzymes, and expressions of PEPCK, PPARγ, and ACO), and overall health condition (decreased ATP and CI). These findings indicate that the combined stress of these two stressors exerts more detrimental impact on the physiological performance and energy metabolism of mussels, and periodic MHWs exacerbate the toxicological effects of ambient concentration nano-TiO2. Given the potential worsening of nanoparticle pollution and the increase in extreme heat events in the future, the well-being of mussels in the marine environment may face further threats.

2.
J Hazard Mater ; 479: 135646, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39217938

RESUMEN

Vibrio parahaemolyticus and microplastics are prevalent in the ocean. Bacteria attach onto plastic particles, forming harmful biofilms that collectively threaten bivalve health. This study investigates the interaction between polyamide microplastics (PA: particle size 38 ± 12 µm) and V. parahaemolyticus, as well as their combined impact on thick-shelled mussels (Mytilus coruscus). We introduced 1011 CFU/L of V. parahaemolyticus into varying PA concentrations (0, 5, 50, and 500 particles/L) to observe growth over 14 h and biofilm formation after 48 h. Our findings indicate that microplastics suppress biofilm formation and virulence gene expression. Four treatments were established to monitor mussel responses: a control group without PA or V. parahaemolyticus; a group with 50 particles/L PA; a group with 1011 CFU/L V. parahaemolyticus; and a co-exposure group with both 50 particles/L PA and 1011 CFU/L V. parahaemolyticus, over a 14-day experiment. However, combined stress from microplastics and Vibrio led to immune dysregulation in mussels, resulting in intestinal damage and microbiome disruption. Notably, V. parahaemolyticus had a more severe impact on mussels than microplastics alone, yet their coexistence reduced some harmful effects. This study is the first to explore the interaction between microplastics and V. parahaemolyticus, providing important insights for ecological risk assessments.

3.
Environ Pollut ; 359: 124741, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147220

RESUMEN

Microplastics (MPs) and organophosphate flame retardants (OPFRs) have recently become ubiquitous and cumulative pollutants in the oceans. Since OPFRs are added to or adsorbed onto MPs as additives, it is necessary to study the composite contamination of OPFRs and MPs, with less focus on bio-based PLA. Therefore, this study focused on the ecotoxicity of the biodegradable MP polylactic acid (PLA) (5 µm, irregular fragments, 102 and 106 particles/L), and a representative OPFRs tris(1-chloro-2-propyl) phosphate (TCPP, 0.5 and 50 µg/L) at environmental and high concentrations. The mussel Mytilus coruscus was used as a standardised bioindicator for exposure experiments. The focus was on examining oxidative stress (catalase, CAT, superoxide dismutase, SOD, malondialdehyde, MDA), immune responses acid (phosphatase, ACP, alkaline phosphatase, AKP, lysozyme, LZM), neurotoxicity (acetylcholinesterase, AChE), energy metabolism (lactate dehydrogenase, LDH, succinate dehydrogenase, SDH, hexokinase, HK), and physiological indices (absorption efficiency, AE, excretion rate, ER, respiration rate, RR, condition index, CI) after 14 days exposure. The results of significantly increased oxidative stress and immune responses, and significantly disturbed energy metabolism and physiological activities, together with an integrated biomarker response (IBR) analysis, indicate that bio-based PLA MPs and TCPP could cause adverse effects on mussels. Meanwhile, TCPP interacted significantly with PLA, especially at environmental concentrations, resulting in more severe negative impacts on oxidative and immune stress, and neurotoxicity. The more severe adverse effects at environmental concentrations indicate higher ecological risks of PLA, TCPP and their combination in the real marine environment. Our study presents reliable data on the complex effects of bio-based MP PLA, TCPP and their combination on marine organisms and the environment.


Asunto(s)
Retardadores de Llama , Microplásticos , Mytilus , Estrés Oxidativo , Poliésteres , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Retardadores de Llama/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microplásticos/toxicidad , Organofosfatos/toxicidad , Compuestos Organofosforados
4.
Food Chem X ; 23: 101647, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113739

RESUMEN

Microplastics have become major pollutants in the marine environment and can accumulate in high concentrations, especially in the gut of marine organisms. Unlike other seafood, bivalves are consumed whole, along with their digestive systems, resulting in the transfer of microplastics to humans. Therefore, there is an urgent need to review the status of microplastic pollution in marine bivalves. In this context, this article provides a comprehensive review of the status of microplastic pollution in marine bivalves and the impact of microplastics on the physiology and immunology of marine bivalves. In general, marine bivalves can accumulate high levels of microplastics in a tissue-specific manner. Although microplastic pollution does not cause mortality in bivalves, it can adversely affects bivalves' immunity, byssus production, and reproduction, potentially affecting bivalve populations. This article provides important information that will aid establishing management measures and determining the direction of future research.

5.
Mar Pollut Bull ; 206: 116684, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39083912

RESUMEN

Pollutants often exist as mixtures in environmental settings, creating a challenge in selecting the most effective combination of biomarkers for routine monitoring. This study was conducted seasonally in Victoria Harbour, Hong Kong, to compare the responses of nine biomarkers in the green-lipped mussel Perna viridis with respect to its tissue levels of persistent organic pollutants and heavy metals. Multivariate statistical techniques were utilised to determine the single best predictor and optimal subset of biomarkers in P. viridis for each of the four scenarios: representing overall biomarker responses in the dry season, and wet season, as well as correlating tissue levels of mixed pollutants in the dry season, and wet season. Our findings recommend lysosomal destabilisation, and the nucleic acid ratio of RNA to DNA, as the core biomarkers in P. viridis for marine pollution monitoring. The non-specificity of these biomarkers allows effective identification of pollution hotspots and guides further detailed assessment.


Asunto(s)
Biomarcadores , Monitoreo del Ambiente , Perna , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Biomarcadores/análisis , Hong Kong , Metales Pesados/análisis , Estaciones del Año
6.
Mar Environ Res ; 200: 106645, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013227

RESUMEN

Due to continuous increase in marine plastic waste, microplastics are ubiquitous in the marine environment. However, there are few studies on the harmful effects caused by microplastics with different particle sizes, and the interaction between particle size and concentration requires further investigation. This study explored the differences in physiological and biochemical responses, photosynthesis and oxidative stress damage of the microalga Isochrysis galbana exposed to three different particle size microplastics. It was found that different particle sizes and concentrations of microplastics resulted in significant differences (p < 0.05) in the growth rate, photosynthesis, and oxidative stress level of I. galbana. With the decrease of the particle size and lowering concentration of microplastics, the growth rate, photosynthesis and oxidative stress levels of I. galbana were reduced. Significant differences in photosynthesis and oxidative stress levels were observed when I. galbana was exposed to smallest particle size and lowest concentration of microplastics. This study provides new insights about whether polystyrene microplastics of different particle sizes and concentrations exhibit complex effects on microalgae, and explores the underlying reasons for such effects. In short, this study predicts the exacerbating adverse effects of microplastic pollution on the primary productivity, with significant implications for marine food webs and ecosystem health.


Asunto(s)
Haptophyta , Microalgas , Microplásticos , Estrés Oxidativo , Tamaño de la Partícula , Poliestirenos , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Haptophyta/efectos de los fármacos , Haptophyta/crecimiento & desarrollo , Haptophyta/fisiología , Poliestirenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
7.
Sci Total Environ ; 946: 174386, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38960152

RESUMEN

Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.


Asunto(s)
Microplásticos , Poliésteres , Poliestirenos , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Poliésteres/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Mytilus/efectos de los fármacos , Mytilus/fisiología , Petróleo/toxicidad
8.
Mar Pollut Bull ; 205: 116682, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981190

RESUMEN

In the marine environment, nanoparticles play a role in adsorbing and catalytically degrading organic pollutants, thereby mitigating their toxic effects on aquatic organisms. This study aimed to investigate the impact of nano titanium dioxide (nTiO2) and tris (2-chloropropyl) phosphate (TCPP) on the hemolymph and digestive function of the thick-shell mussel Mytilus coruscus. Mussels were divided into a control group, a group exposed to TCPP alone, a group exposed to a combination of TCPP and 0.5 mg/L nTiO2, and a group exposed to a combination of TCPP and 1 mg/L nTiO2. After 14 days of exposure, oxidative stress responses, including superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, immune defense responses, including acid phosphatase (ACP) and alkaline phosphatase (AKP) activities, and gene expression, including HSP70 expression, were measured in the hemolymph and digestive glands of the mussels. Compared to the control group, mussels solely exposed to 100 µg/L TCPP exhibited a significant reduction in SOD activity in the hemolymph. When TCPP was co-exposed with 0.5 mg/L nTiO2, there were significant increases in MDA content and AKP activity in both the digestive gland and hemolymph compared to the control group. Upon co-exposure of TCPP with 1 mg/L nTiO2, MDA content and AKP activity in the digestive gland significantly decreased, while SOD, ACP, and AKP activity in the hemolymph significantly increased and MDA content significantly decreased, returning to the control group levels. Furthermore, in the combined exposure, HSP70 gene expression significantly decreased as the nTiO2 concentration increased from 0.5 mg/L to 1 mg/L. In summary, TCPP impacted the hemolymph and digestive function of mussels, whereas a concentration of 1 mg/L nTiO2 effectively alleviated the toxic effects of TCPP. This study is crucial for assessing the ecological risks of nanoparticles and emerging organic pollutants in marine environments, and provides new insights into the interaction between nTiO2 and TCPP, as well as the influence of nTiO2 concentration on mitigating TCPP toxicity.


Asunto(s)
Hemolinfa , Mytilus , Titanio , Contaminantes Químicos del Agua , Animales , Titanio/toxicidad , Mytilus/efectos de los fármacos , Hemolinfa/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Nanopartículas/toxicidad
9.
Fish Shellfish Immunol ; 151: 109700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876409

RESUMEN

The impact of environmental factors on the health of the endangered Chinese sturgeon (Acipenser sinensis) and the potential hazards associated with sample collection for health monitoring pose urgent need to its conservation. In this study, Chinese sturgeons were selected from indoor and outdoor environments to evaluate metabolic and tissue damage indicators, along with a non-specific immune enzyme in fish mucus. Additionally, the microbiota of both water bodies and fish mucus were determined using 16S rRNA high-throughput sequencing. The correlation between the indicators and the microbiota was investigated, along with the measurement of multiple environmental factors. The results revealed significantly higher levels of two metabolic indicators, total protein (TP) and cortisol (COR) in indoor fish mucus compared to outdoor fish mucus (p < 0.05). The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), creatine kinase (CK), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were significantly higher in indoor fish, serving as indicators of tissue damage (p < 0.05). The activity of lysozyme (LZM) was significantly lower in indoor fish (p < 0.01). Biomarker analysis at the phylum and genus levels in outdoor samples revealed that microorganisms were primarily related to the catabolism of organic nutrients. In indoor environments, microorganisms displayed a broader spectrum of functions, including ecological niche establishment, host colonization, potential pathogenicity, and antagonism of pathogens. KEGG functional enrichment corroborated these findings. Dissolved oxygen (DO), electrical conductivity (EC), ammonia nitrogen (NH3-N), turbidity (TU), and chemical oxygen demand (COD) exerted effects on outdoor microbiota. Temperature (TEMP), nitrate (NO3-), total phosphorus (TP), and total nitrogen (TN) influenced indoor microbiota. Changes in mucus indicators, microbial structure, and function in both environments were highly correlated with these factors. Our study provides novel insights into the health impacts of different environments on Chinese sturgeon using a non-invasive method.


Asunto(s)
Peces , Microbiota , Moco , Animales , Moco/inmunología , Moco/microbiología , Peces/inmunología , Peces/microbiología , ARN Ribosómico 16S/genética , Biomarcadores
10.
Artículo en Inglés | MEDLINE | ID: mdl-38742643

RESUMEN

BACKGROUND: The study focused on the impact of Ulva fasciata extract (UFE) supplementation in the diets of Nile tilapia (Oreochromis niloticus) on blood and biochemical markers, immune and oxidative responses, and the expression of related genes, with a specific interest in their condition following exposure to Aeromonas hydrophila. METHODS: Four different levels of UFE were tested in the diets: 0% (0 mg kg- 1) for the control group (U0), and incremental additions of 0.05% (50 mg kg-1), 0.1% (100 mg kg-1), and 0.15% (150 mg kg-1) for the experimental groups U50, U100, and U150 respectively. Groups of 45 fish weighing 3.126 ± 0.120 g were fed these diets over 90 days. RESULTS: The study found that groups treated with UFE showed statistically significant enhancements (p < 0.05) compared to the control group. These improvements included increased red and white blood cell counts, higher haemoglobin concentrations, greater packed cell volume, and elevated enzyme activities-specifically, superoxide dismutase, catalase, alanine aminotransferase, and aspartate aminotransferase. Additionally, lysozyme and phagocytic activities were notably higher, especially in the U100 group after exposure. Before exposure to Aeromonas hydrophila, all levels of UFE supplementation led to increased expression of TNF-α and COXII genes and decreased NFκ-B expression. After the challenge, UFE intake resulted in varied expression levels of immune and antioxidant genes (TNF-α, NFκ-B, SOD, and COXII) in the liver, with the most effective responses observed in the U50, U100, and U150 groups. CONCLUSIONS: The findings underscore the potential of dietary UFE as a natural antioxidant and immune booster for Nile tilapia.

11.
Sci Total Environ ; 937: 173538, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38802009

RESUMEN

Many researchers have evaluated the fishery carbon sink potential of bivalve aquaculture, with most studies focusing on the Life Cycle Assessment (LCA) of individual bivalves, and there is currently no consensus on whether bivalves are carbon sinks or carbon sources. It is worth noting that most studies have not considered the impact of bivalve aquaculture on ecosystems when evaluating its carbon sink potential. In this context, based on existing literature, this article aims to comprehensively review the effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. In general, our findings revealed that moderate and low stocking densities of bivalve aquaculture do not lead to significant changes in the abundance of phytoplankton, but it does indeed alter the phytoplankton community structure from dominated by huge diatom with lower carbon densities to dominated by small phytoplankton with higher carbon densities. Therefore, bivalve aquaculture may increase the total carbon storage in the water column. In addition, bivalve aquaculture also increases the sedimentation rate of suspended particles, increasing the rate of carbon burial, especially in low-energy environment and shallow water areas. The findings of this article fill the knowledge gap of fishery carbon sink in bivalve aquaculture from an ecosystem perspective.


Asunto(s)
Acuicultura , Bivalvos , Secuestro de Carbono , Carbono , Sedimentos Geológicos , Animales , Bivalvos/metabolismo , Sedimentos Geológicos/química , Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Fitoplancton
12.
Environ Int ; 187: 108681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663234

RESUMEN

Exposing marine organisms to contemporary contaminants, such as perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO2), can induce multifaceted physiological consequences. Our investigation centered on the responses of the mussel, Mytilus coruscus, to these agents. We discerned pronounced disruptions in gill filament connections, pivotal structures for aquatic respiration, suggesting compromised oxygen uptake capabilities. Concurrently, the respiratory rate exhibited a marked decline, indicating a respiratory distress. Furthermore, the mussels' clearance rate, a metric of their filtration efficacy, diminished, suggesting the potential for bioaccumulation of deleterious substances. Notably, the co-exposure of PFOA and nano-TiO2 exhibits interactive effects on the physiological performance of the mussels. The mussels' digestive performance waned in the face of heightened PFOA and nano-TiO2 concentrations, possibly hampering nutrient assimilation and energy accrual. This was mirrored in the noticeable contraction of their energy budget, suggesting long-term growth repercussions. Additionally, the dysregulation of the gut microbiota and the reduction in its diversity further confirm alterations in intestinal homeostasis, subsequently impacting its physiological functions and health. Collectively, these findings underscore the perils posed by escalated PFOA and nano-TiO2 levels to marine mussels, accentuating the need for a deeper understanding of nanoparticle-pollutant synergies in marine ecosystems.


Asunto(s)
Caprilatos , Fluorocarburos , Titanio , Contaminantes Químicos del Agua , Titanio/toxicidad , Caprilatos/toxicidad , Animales , Fluorocarburos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Mytilus/efectos de los fármacos , Branquias/efectos de los fármacos , Nanopartículas/toxicidad
13.
Fish Shellfish Immunol ; 149: 109527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561068

RESUMEN

Skin mucus analysis has recently been used as a non-invasive method to evaluate for fish welfare. The present research study was conducted to examine the skin mucosal immunity and skin microbiota profiles of sturgeons infected with Citrobacter freundii. Our histology results showed that the thickness of the epidermal layer of skin remained thinner, and the number of mucous cells was significantly decreased in sturgeons after infection (p < 0.05). Total protein, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and creatine kinase levels in the mucus showed biphasic pattern (decrease and then increase). Lactate dehydrogenase, lysozyme, and acid phosphatase activities in the mucus showed an increasing trend after infection. Furthermore, 16S rRNA sequencing also revealed that C. freundii infection also affected the diversity and community structure of the skin mucus microbiota. An increase in microbial diversity (p > 0.05) and a decrease in microbial abundance (p < 0.05) after infection were noted. The predominant bacterial phyla in the skin mucus were Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Specifically, the relative abundance of Fusobacteria increased after infection. The predominant bacterial genera in the skin mucus were Cetobacterium, Pelomonas, Bradyrhizobium, Flavobacterium, and Pseudomonas. The relative abundance of Cetobacterium, Pseudomonas, and Flavobacterium increased after infection. Our current research findings will provide new insights into the theoretical basis for future research studies exploring the mechanism of sturgeon infection with C. freundii.


Asunto(s)
Citrobacter freundii , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Peces , Inmunidad Mucosa , Microbiota , Piel , Animales , Citrobacter freundii/inmunología , Microbiota/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Piel/inmunología , Piel/microbiología , Peces/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/microbiología , Moco/inmunología , Moco/microbiología , ARN Ribosómico 16S/genética
14.
J Hazard Mater ; 469: 134062, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503212

RESUMEN

Perfluorooctanoate (PFOA) is widely used as a surfactant and has metabolic, immunologic, developmental, and genetic toxicity on marine organisms. However, the effects of PFOA on individual defense functions in mussels in the presence of titanium dioxide nanoparticles (nano-TiO2) are poorly understood. To investigate the defense strategies and regulatory mechanisms of mussels under combined stressors, the thick-shell mussels Mytilus coruscus were exposed to different PFOA concentrations (0, 2 and 200 µg/L) and nano-TiO2 (0 and 0.1 mg /L, size: 25 nm) for 14 days. The results showed that, compared to the control group, PFOA and nano-TiO2 significantly reduced the number of byssal threads (NBT), byssal threads length (BTL), diameter of proximal threads (DPB), diameter of middle threads (DMB), diameter of distal byssal threads (DDB), adhesive plaque area (BPA), and breaking force of byssal threads (N). Under the influence of PFOA and nano-TiO2, the morphological surface smoothness of the fractured byssal threads surface increased, concurrently inducing an increased surface roughness in the adhesive plaques. Additionally, under the presence of PFOA and nano-TiO2, the foot displayed dispersed tissue organization and damaged villi, accompanied by an increased incidence of cellular apoptosis and an upregulation of the apoptosis gene caspase-8. Expression of the adhesion gene mfp-3 and byssal threads strength genes (preCOL-D, preCOL-NG) was upregulated. An interactive effect on the performance of byssal threads is observed under the combined influence of PFOA and nano-TiO2. Under co-exposure to PFOA and nano-TiO2, the performance of the byssal threads deteriorates, the foot structure is impaired, and the genes mRNA expression of byssal thread secretory proteins have compensated for the adhesion and byssal threads strength by up-regulation. Within marine ecosystems, organic and particulate contaminants exert a pronounced effect on the essential life processes of individual organisms, thereby jeopardizing their ecological niche within community assemblages and perturbing the dynamic equilibrium of the overarching ecosystem. ENVIRONMENTAL IMPLICATION: Perfluorooctanoic acid (PFOA) is prone to accumulate in marine organisms. TiO2 nanoparticles (nano-TiO2) are emerging environmental pollutants frequently found in marine environment. The effects of PFOA and nano-TiO2 on marine mussels are not well understood, and their toxic mechanisms remain largely unknown. We investigated the impacts of PFOA and nano-TiO2 on mussel byssus defense mechanisms. By assessing byssus performance indicators, morphological structures of the byssus, subcellular localization, and changes in byssal secretion-related genes, we revealed the combined effects and mechanisms through which these two types of pollutants may affect the functional capabilities and survival of mussels in the complex marine ecosystem.


Asunto(s)
Fluorocarburos , Mytilus , Titanio , Animales , Ecosistema , Caprilatos/toxicidad
15.
Chemosphere ; 355: 141777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527634

RESUMEN

With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 µg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 µg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/metabolismo , Antioxidantes/metabolismo , Agua/metabolismo , Ecosistema , Carbonilación Proteica , Temperatura , Intestinos , Contaminantes Químicos del Agua/metabolismo , Titanio/farmacología
16.
Environ Sci Technol ; 58(12): 5512-5523, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478581

RESUMEN

The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.


Asunto(s)
Monitoreo del Ambiente , Ostreidae , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Humanos , Bromofeniramina/análisis , China , Clorfeniramina/análisis , Antagonistas de los Receptores Histamínicos/análisis , Océanos y Mares , Ostreidae/química , Preparaciones Farmacéuticas/análisis , Prometazina/análisis , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 470: 134107, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554520

RESUMEN

Rayon microfibers, micro-sized semi-synthetic polymers derived from cellulose, have been frequently detected and reported as "micropollutants" in marine environments. However, there has been limited research on their ecotoxicity and combined effects with persistent organic pollutants (POPs). To address these knowledge gaps, thick-shell mussels (Mytilus coruscus) were exposed to rayon microfibers at 1000 pieces/L, along with polychlorinated biphenyls (PCBs) at 100 and 1000 ng/L for 14 days, followed by a 7-day recovery period. We found that rayon microfibers at the environmentally relevant concentration exacerbated the irreversible effects of PCBs on the immune and digestive systems of mussels, indicating chronic and sublethal impacts. Furthermore, the results of 16 s rRNA sequencing demonstrated significant effects on the community structure, species richness, and diversity of the mussels' intestinal microbiota. The branching map analysis identified the responsive bacteria to rayon microfibers and PCBs belonging to the Proteobacteria, Actinobacteriota, and Bacteroidota phyla. Despite not being considered a conventional plastic, the extensive and increasing use of rayon fibers, their direct toxicological effects, and their interaction with POPs highlight the need for urgent attention, investigation, and regulation to address their contribution to "micropollution".


Asunto(s)
Microbioma Gastrointestinal , Mytilus , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Mytilus/efectos de los fármacos , Celulosa/química , Celulosa/toxicidad , ARN Ribosómico 16S/genética
18.
Mar Environ Res ; 197: 106467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520956

RESUMEN

Marine hypoxia poses a significant challenge in the contemporary marine environment. The horseshoe crab, an ancient benthic marine organism, is confronted with the potential threat of species extinction due to hypoxia, making it an ideal candidate for studying hypoxia tolerance mechanisms. In this experiment, juvenile Tachypleus tridentatus were subjected to a 21-day trial at DO:2 mg/L (hypoxia) and DO:6 mg/L conditions. The experimental timeline included a 14-day exposure phase followed by a 7-day recovery period. Sampling occurred on days 0, 7, 14, and 21, where the period from day 14 to day 21 corresponds to seven days of recuperation. Several enzymatic activities of important proteins throughout this investigation were evaluated, such as succinate dehydrogenase (SDH), phosphofructokinase (PFK), hexokinase (HK), lactate dehydrogenase (LDH), and pyruvate kinase (PK). Concurrently, the relative expression of hexokinase-1 (HK), hypoxia-inducible factor 1-alpha inhibitor (FIH), and hypoxia-inducible factor 1-alpha (HIF-1α), pyruvate dehydrogenase phosphatase (PDH), succinate dehydrogenase assembly factor 4 (SDH), and Glucose-6-phosphatase (G6Pase) were also investigated. These analyses aimed to elucidate alterations in the hypoxia signaling pathway and respiratory energy metabolism. It is revealed that juvenile T. tridentatus initiated the HIF pathway under hypoxic conditions, resulting in an upregulation of HIF-1α and FIH-1 gene expression, which in turn, influenced a shift in metabolic patterns. Particularly, the activity of glycolysis-related enzymes was promoted significantly, including PK, HK, PKF, LDH, and the related HK gene. In contrast, enzymes linked to aerobic respiration, PDH, and SDH, as well as the related PDH and SDH genes, displayed down-regulation, signifying a transition from aerobic to anaerobic metabolism. Additionally, the activity of gluconeogenesis-related enzymes such as PK and G6Pase gene expression were significantly elevated, indicating the activation of gluconeogenesis and glycogenolysis pathways. Consequently, juvenile T. tridentatus demonstrated an adaptive response to hypoxic conditions, marked by changes in respiratory energy metabolism modes and the activation of hypoxia signaling pathways.


Asunto(s)
Cangrejos Herradura , Succinato Deshidrogenasa , Animales , Cangrejos Herradura/genética , Cangrejos Herradura/metabolismo , Succinato Deshidrogenasa/metabolismo , Hexoquinasa/metabolismo , Hipoxia/metabolismo , Transducción de Señal , Glucosa/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
19.
Aquat Toxicol ; 270: 106900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537436

RESUMEN

Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 µg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.


Asunto(s)
Braquiuros , Pentaclorofenol , Contaminantes Químicos del Agua , Animales , Antioxidantes , Pentaclorofenol/toxicidad , Braquiuros/genética , Natación , Contaminantes Químicos del Agua/toxicidad , Titanio/toxicidad , Inmunidad
20.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 891-908, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38356017

RESUMEN

Phytase is crucial in enhancing the bioavailability and release of phosphorus and other nutrients bound to phytic acid, making them more bioavailable for animal absorption. This study was carried out to inspect the effect of supplementing low phosphorus (P) diet with di-calcium phosphate (DCP) and liquid phytase enzyme (LP), which contains 1500 FTU/kg, on growth performance, intestinal morphometry, proximate body chemical composition, blood profile, immunity status, liver mitochondrial enzyme activities, the expression response and economic returns of Nile tilapia (Oreochromis niloticus). Three triplicate groups of fish (initial weight 5.405 ± 0.045 g, N = 90) were fed on three different diets for 90 days. The first was a control diet with zero DCP; the second was a control diet supplemented with 0.71% DCP; the third was a control diet supplemented with 0.03% LP. The groups were designated as CG, DCP and LP, respectively. Results showed that LP induced considerable improvements (p < 0.05) in FBW, body weight gain, weight gain rate, specific growth rate, HIS, viscero-somatic index, spleen-somatic index, feed conversion ratio, blood parameters and the histomorphometry assessment of intestinal villi absorptive capacity, compared with the other groups. Also, whole-body protein and lipid contents pointedly (p < 0.05) increased by LP, compared with the DCP group. A positive response (p < 0.05) to the phytase enzyme was noted in complexes I, III and IV of the mitochondrial liver complex enzyme activity. Likewise, the relative gene expression levels of (GHr-1, IGF-1, FAS and LPL) were notably (p < 0.05) upregulated by phytase enzyme, associated with DCP and control groups. Further, phytase recorded the highest total return and profit percentage. It can be concluded that Nile tilapia benefits from using phytase enzyme 1500 FTU/kg at 0.03% without adding DCP in terms of good performance and profits.


Asunto(s)
6-Fitasa , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Cíclidos , Dieta , Suplementos Dietéticos , Intestinos , Animales , 6-Fitasa/farmacología , 6-Fitasa/administración & dosificación , Alimentación Animal/análisis , Intestinos/efectos de los fármacos , Intestinos/anatomía & histología , Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA