Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
Int J Biol Macromol ; 279(Pt 4): 135525, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260650

RESUMEN

E26-transforming specific (ETS) variant 6 (ETV6) is a transcription factor regulating the expression of interferon stimulating genes (ISGs) and involved in the embryonic development and hematopoietic regulation, but the role of ETV6 in host response to virus infection is not clear. In this study, we show that ETV6 was upregulated in DF-1 cells with poly(I:C) stimulation or IBDV, AIV and ARV infection via engagement of dsRNA by MDA5. Overexpression of ETV6 in DF-1 cells markedly inhibited IBDV-induced type I interferon (IFN-I) and ISGs expressions. In contrast, knockdown, or knockout of ETV6 remarkably inhibited IBDV replication via promoting IFN-I response. Furthermore, our data show that ETV6 negatively regulated host antiviral response to IBDV infection by interaction with TANK binding kinase 1 (TBK1) and subsequently inhibited its phosphorylation. These results uncovered a novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation, furthering our understandings of RNA virus immunosuppression and providing a valuable clue to the development of antiviral reagents for the control of avian RNA virus infection.

2.
Plant Divers ; 46(4): 530-536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39280971

RESUMEN

Forests, the largest terrestrial carbon sinks, play an important role in carbon sequestration and climate change mitigation. Although forest attributes and environmental factors have been shown to impact aboveground biomass, their influence on biomass stocks in species-rich forests in southern China, a biodiversity hotspot, has rarely been investigated. In this study, we characterized the effects of environmental factors, forest structure, and species diversity on aboveground biomass stocks of 30 plots (1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi, China. Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions. Furthermore, we found that aboveground biomass was positively correlated with stand age, mean annual precipitation, elevation, structural attributes and species richness, although not with species evenness. When we compared stands with the same basal area, we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height. These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China. Notably, many natural forests in southern China are not fully stocked. Therefore, their continued growth will increase their carbon storage over time.

3.
Mitochondrial DNA B Resour ; 9(9): 1232-1236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291130

RESUMEN

The ancient mitochondrial genome of a Siberian roe deer (Capreolus pygargus) coded as NJ26S from Jartai Pass Site was obtained by high throughput sequencing. The damage pattern demonstrated the authenticity and reliability of the ancient DNA data. The length of the mitogenome was 16,357 bp, which contained 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. The total base composition of the mitochondrial genome is 28.17% A, 25.01% T, 11.89% G, 19.72% C, and 15.21% missing data with an AT composition of 53.18%. A maximum-likelihood phylogenetic tree was recovered including other roe deer sequences under the TIM2 + I + G4 model. This study presents molecular evidence indicating the presence of Capreolus pygargus in the Xinjiang Uygur Autonomous Region in China more than 3,000 years ago.

4.
Front Oncol ; 14: 1409329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114307

RESUMEN

Background: Metastasis remains the leading cause of mortality among colorectal cancer (CRC) patients. Identification of new metastasis-related genes are critical to improve colorectal cancer prognosis. Methods: Data on mRNA expression in metastatic and primary CRC was obtained from the Gene Expression Omnibus (GEO) database, including GSE81986, GSE41568, GSE71222, GSE21510, and GSE14333. Additionally, data concerning mRNA expression in colon cancer (COAD) and adjacent normal tissues were acquired from The Cancer Genome Atlas (TCGA) database. Hub genes were identified by weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis. Moreover, we assessed the impact of hub gene expression on both overall survival (OS) and disease-free survival (DFS) in patients and identified ZG16 as a potential target. We generated CRC cell lines transfected with lentivirus OE-ZG16 to investigate proliferation, invasion, and migration in vitro. To further elucidate the involvement of ZG16, we utilized gene set enrichment analysis (GSEA) to identify enriched pathways, which were subsequently validated via Western blot analysis. Results: Five datasets containing primary and metastatic CRC samples from GEO database and CRC samples from TCGA database were included in this study and 29 hub genes were identified by WGCNA and differentially expressed gene (DEG) analysis. Low expression of the hub genes (CLCA1 and ZG16) was associated with poor DFS and OS. We confirmed the low expression of ZG16 in CRC using external database and IHC analysis at both transcriptional and protein levels. In addition, the expression of ZG16 was notably elevated in NCM460 cells in comparison to CRC cell lines. The overexpression of ZG16 in CRC cells has been shown to inhibit the proliferation, invasion, and migration of CRC cells. Furthermore, the overexpression of ZG16 has been found to suppress the activation of the epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin signaling pathways in CRC. Conclusion: ZG16 may serve as a promising therapeutic target for metastatic CRC treatment.

5.
Front Oncol ; 14: 1400109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193382

RESUMEN

Background: Lymph node metastasis (LNM) is an important prognostic factor for cervical cancer (CC) and determines the treatment strategy. Hematological indicators have been reported as being useful biomarkers for the prognosis of a variety of cancers. This study aimed to evaluate the feasibility of machine learning models characterized by preoperative hematological indicators to predict the LNM status of CC patients before surgery. Methods: The clinical data of 236 patients with pathologically confirmed CC were retrospectively analyzed at the Gynecology Oncology Department of the First Affiliated Hospital of Bengbu Medical University from November 2020 to August 2022. The least absolute shrinkage and selection operator (LASSO) was used to select 21 features from 35 hematological indicators and for the construction of 6 machine learning predictive models, including Adaptive Boosting (AdaBoost), Gaussian Naive Bayes (GNB), and Logistic Regression (LR), as well as Random Forest (RF), Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost). Evaluation metrics of predictive models included the area under the receiver operating characteristic curve (AUC), accuracy, specificity, sensitivity, and F1-score. Results: RF has the best overall predictive performance for ten-fold cross-validation in the training set. The specific performance indicators of RF were AUC (0.910, 95% confidence interval [CI]: 0.820-1.000), accuracy (0.831, 95% CI: 0.702-0.960), specificity (0.835, 95% CI: 0.708-0.962), sensitivity (0.831, 95% CI: 0.702-0.960), and F1-score (0.829, 95% CI: 0.696-0.962). RF had the highest AUC in the testing set (AUC = 0.854). Conclusion: RF based on preoperative hematological indicators that are easily available in clinical practice showed superior performance in the preoperative prediction of CC LNM. However, investigations on larger external cohorts of patients are required for further validation of our findings.

6.
Heliyon ; 10(15): e35857, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170416

RESUMEN

The increasing emergence and spread of antibiotic resistance accelerate the desire for antibiotic alternatives. Plant extracts have emerged as a promising and relatively unexplored area of research as potential substitutes. Herein, we investigated the prevalence and distribution patterns of bacteria on egg surfaces and evaluated the inhibitory effects of mangosteen extract on these surface bacteria. In addition, we examined the antioxidant activity and egg quality in improving the ability of mangosteen extract. The results showed that the predominant bacteria isolated from eggshells were Gram-positive, with Staphylococcus and Micrococcus as the dominant genera. Notably, mangosteen extract exhibited significant bactericidal activity, effectively inhibiting Gram-positive bacteria on the surface of chicken eggshells. Moreover, the supplementation of mangosteen extract in the feed of laying hens yielded a noteworthy improvement in egg quality, accompanied by positively shaped structure and function of microbial communities on the egg surface and in the feces. Collectively, our findings suggested that mangosteen extract was an effective alternative to traditional antibiotics, offering valuable insights for animal husbandry development.

7.
J Exp Clin Cancer Res ; 43(1): 223, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39128990

RESUMEN

BACKGROUND: CRISPR-Cas13a is renowned for its precise and potent RNA editing capabilities in cancer therapy. While various material systems have demonstrated efficacy in supporting CRISPR-Cas13a to execute cellular functions in vitro efficiently and specifically, the development of CRISPR-Cas13a-based therapeutic agents for intravesical instillation in bladder cancer (BCa) remains unexplored. METHODS: In this study, we introduce a CRISPR-Cas13a nanoplatform, which effectively inhibits PDL1 expression following intravesical instillation. This system utilizes a fusion protein CAST, created through the genetic fusion of CRISPR-Cas13 and the transmembrane peptide TAT. CAST acts as a potent transmembrane RNA editor and is assembled with the transepithelial delivery carrier fluorinated chitosan (FCS). Upon intravesical administration into the bladder, the CAST-crRNAa/FCS nanoparticles (NPs) exhibit remarkable transepithelial capabilities, significantly suppressing PDL1 expression in tumor tissues.To augment immune activation within the tumor microenvironment, we integrated a fenbendazole (FBZ) intravesical system (FBZ@BSA/FCS NPs). This system is formulated through BSA encapsulation followed by FCS coating, positioning FBZ as a powerful chemo-immunological agent. RESULTS: In an orthotropic BCa model, the FBZ@BSA/FCS NPs demonstrated pronounced tumor cell apoptosis, synergistically reduced PDL1 expression, and restructured the immune microenvironment. This culminated in an enhanced synergistic intravesical instillation approach for BCa. Consequently, our study unveils a novel RNA editor nanoagent formulation and proposes a potential synergistic therapeutic strategy. This approach significantly bolsters therapeutic efficacy, holding promise for the clinical translation of CRISPR-Cas13-based cancer perfusion treatments.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/terapia , Humanos , Animales , Administración Intravesical , Ratones , Línea Celular Tumoral , Femenino
8.
Nat Commun ; 15(1): 7069, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152103

RESUMEN

Egg-laying performance is of great economic importance in poultry, but the underlying genetic mechanisms are still elusive. In this work, we conduct a multi-omics and multi-tissue integrative study in hens with distinct egg production, to detect the hub candidate genes and construct hub molecular networks contributing to egg-laying phenotypic differences. We identifiy three hub candidate genes as egg-laying facilitators: TFPI2, which promotes the GnRH secretion in hypothalamic neuron cells; CAMK2D, which promotes the FSHß and LHß secretion in pituitary cells; and OSTN, which promotes granulosa cell proliferation and the synthesis of sex steroid hormones. We reveal key endocrine factors involving egg production by inter-tissue crosstalk analysis, and demonstrate that both a hepatokine, APOA4, and an adipokine, ANGPTL2, could increase egg production by inter-tissue communication with hypothalamic-pituitary-ovarian axis. Together, These results reveal the molecular mechanisms of multi-tissue coordinative regulation of chicken egg-laying performance and provide key insights to avian reproductive regulation.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Células de la Granulosa/metabolismo , Oviposición/genética , Hipófisis/metabolismo , Hipotálamo/metabolismo , Reproducción/genética , Ovario/metabolismo , Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Proteínas Similares a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
9.
Poult Sci ; 103(11): 104188, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39178820

RESUMEN

Avian reovirus (ARV) is the causative agent of avian viral arthritis and causes significant economic losses to the global poultry industry. For clinical diagnosis, detecting ARV-specific antibodies is crucial. We successfully expressed the ARV-σC protein in insect cells using the baculovirus expression vector system, achieving an expression level of approximately 200 mg/L. We developed an indirect enzyme-linked immunosorbent assay (iELISA) using the ARV-σC protein as a coating antigen to detect antibodies against it. The inter-batch and intrabatch coefficients of iELISA variation were less than 10%. Its sensitivity (1:12,800 diluted in serum) was 4 times higher than that of the indirect immunofluorescence assay (IFA; 1:3200 diluted in serum), and it showed no cross-reactivity with antibodies against other common avian viruses (such as Infectious bursal disease virus, Newcastle disease virus). The practicality of the iELISA was further evaluated using clinical samples. 300 clinical sera from chickens vaccinated with the ARV attenuated vaccine and 20 SPF sera were tested using both the iELISA and the IFA, demonstrating a 100% conformity rate. In conclusion, these results suggest that the iELISA developed in this study is a rapid, sensitive, and specific method that could serve as an effective diagnostic tool for monitoring and controlling avian viral arthritis.

10.
Diagnostics (Basel) ; 14(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39202322

RESUMEN

Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.

11.
Bioresour Technol ; 411: 131295, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39155017

RESUMEN

The cultivation of microalgae is significantly influenced by light intensity and utilization efficiency. This study developed a modified Cornet (M-Cornet) model to assess the distribution of light intensity and flux in microalgae cultivation systems. Algal biofilm cultivation represents a more concentrated approach of algal suspension cultivation. Both follow the M-Cornet model and exhibit the same growth rates when cultured under identical conditions. Algal pigments and morphologies greatly impact the light absorption and scattering, resulting in light attenuation in intensity, penetration distance and light flux distribution. Algae varieties exhibit diverse light flux characteristics. 37% - 90% of the incident light is absorbed, of which, 80% to 90% is dissipated as heat. 10% to 63% of the incident light is scattered off the photobioreactor. The overall light utilization efficiency ranges 6% to 13%. The light footprint using the M-Cornet model offers valuable insights for photobioreactors designing and cultivation operating.


Asunto(s)
Luz , Microalgas , Fotobiorreactores , Microalgas/crecimiento & desarrollo , Fotobiorreactores/microbiología , Modelos Biológicos , Biopelículas/crecimiento & desarrollo
12.
J Hazard Mater ; 478: 135447, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116747

RESUMEN

In order to further reduce the energy consumption of the conventional thermal catalytic oxidation system and improve the degradation efficiency of pollutants, photothermal synergistic catalytic oxidation (PTSCO) system was constructed in this paper with propane as simulated pollutant representing VOCs, and then the modified α-MnO2 catalysts were prepared by using the acid activation method, which were used for the catalytic oxidation of propane in PTSCO. The α-MnO2 with appropriate acid concentration possessed excellent low-temperature reducibility, abundant active oxygen species, fast oxygen migration rate and a large number of acid sites. The optimal catalyst, H0.05-MnO2, had a T90 of 204 °C in the PTSCO system, which reduced by more than 30 °C relative to the α-MnO2 (T90 of 235 °C). Moreover, H0.05-MnO2 demonstrated excellent water resistance and long-term stability (T = 45 h). It was shown that the combination of photocatalysis and thermocatalysis can improve propane degradation by examining the kinetics of propane degradation in the PTSCO system and the conformational relationship of propane degradation by catalysts. Furthermore, a multi-pathway synergistic mechanism between photocatalysis and thermocatalysis in the PTSCO system was proposed. This work provided a theoretical basis for the preparation of high-performance catalysts and the catalytic degradation of propane.

13.
Plants (Basel) ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204686

RESUMEN

The combined application of manure and mineral fertilizer represents an effective strategy for enhancing crop yield. However, the relationship between soil fertility and crop yield remains unclear in saline-alkaline soil. Here, a 9-year field experiment (2015-2023) was conducted to investigate the effects of manure application and crop rotations on crop yield and economic efficiency as well as potential associated mechanisms in the Hetao Irrigation District. The results showed that in the third cropping rotation cycle, combined application of manure and mineral fertilizers (NPKO) caused a 6.2%, 38.9%, 65.3%, and 132.2% increase in wheat, sunflower, wheat equivalent yield, and the economic income of sunflower, respectively. The average grain yield had a positive correlation with soil organic matter and nutrient supply. This suggested that the soil organic matter had a positive effect on the crop yield due to its impact on nutrient supply. Simultaneously, the sunflower seed setting rate increased by 65.2% under NPKO. The linear regression model revealed that each additional input of 20 Mg ha-1 of manure resulted in an increase of 3.56 kg ha-1 in crop phosphorus harvest and a 0.05 Kg ha-1 increase in wheat equivalent yield compared to NPK. In conclusion, our results highlighted that manure application promotes soil properties and improves crop yield.

14.
Oncol Lett ; 28(4): 499, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39211300

RESUMEN

The incidence of endometrial cancer (EC) is increasing worldwide, but the specific mechanism of coagulation dysfunction in EC is not fully understood. The objective of the present study was to explore the relationship between autonomic nervous system function and coagulation function in patients with EC using heart rate variability (HRV) analysis. The study included 100 patients with EC who were treated at the Department of Gynecological Oncology of The First Affiliated Hospital of Bengbu Medical University (Bengbu, China) from December 2021 to March 2023. A 5-min resting electrocardiogram was collected from each patient to analyze HRV parameters, including the time domain parameters standard deviation of the normal-normal intervals (SDNN) and root mean square of successive interval differences (RMSSD), and the frequency domain parameters low-frequency power and high-frequency power (HF). Blood samples were submitted to biochemistry tests to measure coagulation markers, namely prothrombin time (PT), international normalized ratio of PT (PT-INR), prothrombin activity (PTA), activated partial thromboplastin time (APTT) and fibrinogen. Bivariate Spearman correlation analyses revealed that PT, PT-INR and APTT were significantly positively correlated with SDNN, RMSSD and HF, while PTA was significantly negatively correlated with RMSSD. Following adjustments for confounding factors, namely age, body mass index, menopause, ligation of the fallopian tubes, diabetes, hypertension, adjuvant chemotherapy and mean heart rate, linear regression analysis demonstrated that SDNN, RMSSD and HF were independent factors influencing PT and PT-INR in patients with EC. The findings of the present study indicate that certain HRV parameters correlate with coagulation markers in EC and provide new insight into the occurrence of cancer-associated coagulation dysfunction.

15.
IEEE Trans Image Process ; 33: 4702-4715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39186412

RESUMEN

Deep learning-based image compression has made great progresses recently. However, some leading schemes use serial context-adaptive entropy model to improve the rate-distortion (R-D) performance, which is very slow. In addition, the complexities of the encoding and decoding networks are quite high and not suitable for many practical applications. In this paper, we propose four techniques to balance the trade-off between the complexity and performance. We first introduce the deformable residual module to remove more redundancies in the input image, thereby enhancing compression performance. Second, we design an improved checkerboard context model with two separate distribution parameter estimation networks and different probability models, which enables parallel decoding without sacrificing the performance compared to the sequential context-adaptive model. Third, we develop a three-pass knowledge distillation scheme to retrain the decoder and entropy coding, and reduce the complexity of the core decoder network, which transfers both the final and intermediate results of the teacher network to the student network to improve its performance. Fourth, we introduce L1 regularization to make the numerical values of the latent representation more sparse, and we only encode non-zero channels in the encoding and decoding process to reduce the bit rate. This also reduces the encoding and decoding time. Experiments show that compared to the state-of-the-art learned image coding scheme, our method can be about 20 times faster in encoding and 70-90 times faster in decoding, and our R-D performance is also 2.3% higher. Our method achieves better rate-distortion performance than classical image codecs including H.266/VVC-intra (4:4:4) and some recent learned methods, as measured by both PSNR and MS-SSIM metrics on the Kodak and Tecnick-40 datasets.

16.
aBIOTECH ; 5(2): 225-230, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974856

RESUMEN

The widely used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system is thought to have evolved from IS200/IS605 transposons. TnpB proteins, encoded by one type of IS200/IS605 transposon, are considered to be the evolutionary ancestors of Cas12 nucleases, which have been engineered to function as RNA-guided DNA endonucleases for genome editing in bacteria and human cells. TnpB nucleases, which are smaller than Cas nucleases, have been engineered for use in genome editing in animal systems, but the feasibility of this approach in plants remained unknown. Here, we obtained stably transformed genome-edited mutants in rice (Oryza sativa) by adapting three recently identified TnpB genome editing vectors, encoding distinct TnpB nucleases (ISAam1, ISDra2, and ISYmu1), for use in plants, demonstrating that the hypercompact TnpB proteins can effectively edit plant genomes. ISDra2 and ISYmu1 precisely edited their target sequences, with no off-target mutations detected, showing that TnpB transposon nucleases are suitable for development into a new genome editing tool for plants. Future modifications improving the genome-editing efficiency of the TnpB system will facilitate plant functional studies and breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00172-6.

17.
Front Bioeng Biotechnol ; 12: 1399691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015138

RESUMEN

Introduction: Surgical correction is a common treatment for severe scoliosis. Due to the significant spinal deformation that occurs with this condition, spinal cord injuries during corrective surgery can occur, sometimes leading to paralysis. Methods: Such events are associated with biomechanical changes in the spinal cord during surgery, however, their underlying mechanisms are not well understood. Six patient-specific cases of scoliosis either with or without spinal complications were examined. Finite element analyses (FEA) were performed to assess the dynamic changes and stress distribution of spinal cords after surgical correction. The FEA method is a numerical technique that simplifies problem solving by replacing complex problem solving with simplified numerical computations. Results: In four patients with poor prognosis, there was a concentration of stress in the spinal cord. The predicted spinal cord injury areas in this study were consistent with the clinical manifestations of the patients. In two patients with good prognosis, the stress distribution in the spinal cord models was uniform, and they showed no abnormal clinical manifestations postoperatively. Discussion: This study identified a potential biomechanical mechanism of spinal cord injury caused by surgical correction of scoliosis. Numerical prediction of postoperative spinal cord stress distribution might improve surgical planning and avoid complications.

18.
Oncogenesis ; 13(1): 29, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068158

RESUMEN

Bladder cancer is characterized by aberrant activation of the phosphatidylinositol-3-OH kinase (PI3K) signaling, underscoring the significance of directing therapeutic efforts toward the PI3K pathway as a promising strategy. In this study, we discovered that PI3K serves as a potent therapeutic target for bladder cancer through a high-throughput screening of inhibitory molecules. The PI3K inhibitor demonstrated a robust anti-tumor efficacy, validated both in vitro and in vivo settings. Nevertheless, the feedback activation of JAK1-STAT3 signaling reinstated cell and organoid survival, leading to resistance against the PI3K inhibitor. Mechanistically, the PI3K inhibitor suppresses PTPN11 expression, a negative regulator of the JAK-STAT pathway, thereby activating STAT3. Conversely, restoration of PTPN11 enhances the sensitivity of cancer cells to the PI3K inhibitor. Simultaneous inhibition of both PI3K and STAT3 with small-molecule inhibitors resulted in sustained tumor regression in patient-derived bladder cancer xenografts. These findings advocate for a combinational therapeutic approach targeting both PI3K and STAT3 pathways to achieve enduring cancer eradication in vitro and in vivo, underscoring their promising therapeutic efficacy for treating bladder cancer.

19.
Obes Surg ; 34(8): 3105-3110, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39034373

RESUMEN

Sleeve gastrectomy (SG) is widely recognized as the leading bariatric procedure worldwide. However, leakage, its major complication, remains a significant concern. This study focuses on the challenges of managing leakage, especially when conventional endoscopic treatments are ineffective. Although a novel one-step approach as reported by Pulimuttil James Zachariah from Wei-Jei Lee's team has demonstrated promise, further investigations and reports on its efficacy are currently insufficient. Between January 2021 and November 2023, we analyzed five patients treated at our center for SG leakage. Patient data include demographics, comorbidities, surgical details, and outcomes. The study details Laparo-Endoscopic Gastrostomy procedures performed post-SG leakage diagnosis, highlighting differences between acute and chronic instances. The study effectively implemented Zachariah's one-step approach, achieving favorable results in all five cases. Patient characteristics, presentation, postoperative progression, and additional treatments were documented. The outcome supports Zachariah's assertion that the one-step approach is a simple, safe, and cost-effective approach for SG leakage, avoiding digestive tract reconstruction. Despite potential limitations, including challenges in closing large defects and extended healing times, the procedure's effectiveness in decompression, drainage, and nutritional support significantly contributes to its elevated healing rate. The study emphasizes the importance of timely abdominal drain removal based on clinical conditions, challenging traditional practices for better clinical outcomes.


Asunto(s)
Fuga Anastomótica , Gastrectomía , Gastrostomía , Laparoscopía , Obesidad Mórbida , Humanos , Femenino , Gastrectomía/métodos , Gastrectomía/efectos adversos , Adulto , Obesidad Mórbida/cirugía , Masculino , Fuga Anastomótica/cirugía , Fuga Anastomótica/etiología , Gastrostomía/métodos , Persona de Mediana Edad , Laparoscopía/métodos , Resultado del Tratamiento , Cirugía Bariátrica/métodos , Cirugía Bariátrica/efectos adversos
20.
J Extracell Vesicles ; 13(7): e12490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051742

RESUMEN

Extracellular vesicles (EVs) are emerging as promising carriers for the delivery of therapeutic biologics. Genetic engineering represents a robust strategy for loading proteins of interest into EVs. Identification of EV-enriched proteins facilitates protein cargo loading efficiency. Many EV-enriched proteins are sorted into EVs via an endosomal sorting complex required for transport (ESCRT)-dependent pathway. In parallel, viruses hijack this EV biosynthesis machinery via conserved late domain motifs to promote egress from host cells. Inspired by the similarity of biogenesis between EVs and viruses, we developed a synthetic, Late domain-based EV scaffold protein that enables the display of a set of single chain variable fragments (scFvs) on the EV surface. We named this scaffold the Late domain-based exosomal antibody surface display platform (LEAP). We applied the LEAP scaffold to reprogramme HEK293T cell-derived EVs to elicit T-cell anti-tumor immunity by simultaneously displaying αPD-L1 and αCD3 scFvs on the EV surface (denoted as αPD-L1×αCD3 bispecific T-cell engaging exosomes, BiTExos). We demonstrated that αPD-L1×αCD3 BiTExos actively redirected T cells to bind to PD-L1+ tumor cells, promoting T-cell activation, proliferation and tumoricidal cytokine production. Furthermore, the αPD-L1×αCD3 BiTExos promoted T-cell infiltration into the tumor microenvironment to mitigate the tumor burden in vivo. Our study suggested that the LEAP scaffold may serve as a platform for EV surface display and could be applied for a broad range of EV-based biomedical applications.


Asunto(s)
Antígeno B7-H1 , Complejo CD3 , Vesículas Extracelulares , Anticuerpos de Cadena Única , Linfocitos T , Humanos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Complejo CD3/inmunología , Complejo CD3/metabolismo , Células HEK293 , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Anticuerpos de Cadena Única/inmunología , Exosomas/metabolismo , Exosomas/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Activación de Linfocitos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA