Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(12): 21696-21707, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859518

RESUMEN

Edge-enhanced imaging by spiral phase contrast has proven instrumental in revealing phase or amplitude gradients of an object, with notable applications spanning feature extraction, target recognition, and biomedical fields. However, systems deploying spiral phase plates encounter limitations in phase mask modulation, hindering the characterization of the modulation function during image reconstruction. To address this need, we propose and demonstrate an innovative nonlinear reconstruction method using a Laguerre-Gaussian composite vortex filter, which modulates the spectrum of the target. The involved nonlinear process spectrally transforms the incident short-wavelength-infrared (SWIR) signal from 1550 to 864 nm, subsequently captured by a silicon charge-coupled device. Compared with conventional schemes, our novel filtering method effectively suppresses the diffraction noise, significantly enhancing image contrast and resolution. By loading specific phase holograms on the spatial light modulator, bright-field imaging, isotropic, amplitude-controlled anisotropic, and directional second-order edge-enhanced imaging are realized. Anticipated applications for the proposed SWIR edge-enhanced imaging system encompass domains such as artificial intelligence recognition, deep tissue medical diagnostics, and non-destructive defect inspection. These applications underscore the valuable potential of our cutting-edge methodology in furthering both scientific exploration and practical implementations.

2.
Angew Chem Int Ed Engl ; 63(5): e202317626, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085222

RESUMEN

Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and ß-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.

3.
Org Lett ; 25(33): 6139-6142, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37565674

RESUMEN

Nickel performs excellently in C-C and C-X cross-coupling reactions. Here, we disclose a Ni(II)-catalyzed asymmetric C-P cross-coupling reaction to afford valuable chiral heterocyclic tertiary phosphine oxides. The method is mild and efficient, which invokes a self-sustained nickel catalytic cycle without an external reductant, light irradiation, or electricity.

4.
Nat Commun ; 14(1): 1073, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841860

RESUMEN

Single-pixel cameras have recently emerged as promising alternatives to multi-pixel sensors due to reduced costs and superior durability, which are particularly attractive for mid-infrared (MIR) imaging pertinent to applications including industry inspection and biomedical diagnosis. To date, MIR single-pixel photon-sparse imaging has yet been realized, which urgently calls for high-sensitivity optical detectors and high-fidelity spatial modulators. Here, we demonstrate a MIR single-photon computational imaging with a single-element silicon detector. The underlying methodology relies on nonlinear structured detection, where encoded time-varying pump patterns are optically imprinted onto a MIR object image through sum-frequency generation. Simultaneously, the MIR radiation is spectrally translated into the visible region, thus permitting infrared single-photon upconversion detection. Then, the use of advanced algorithms of compressed sensing and deep learning allows us to reconstruct MIR images under sub-Nyquist sampling and photon-starving illumination. The presented paradigm of single-pixel upconversion imaging is featured with single-pixel simplicity, single-photon sensitivity, and room-temperature operation, which would establish a new path for sensitive imaging at longer infrared wavelengths or terahertz frequencies, where high-sensitivity photon counters and high-fidelity spatial modulators are typically hard to access.

7.
Anal Chim Acta ; 1131: 1-8, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32928469

RESUMEN

A simple but effective method for the detection of miRNAs was proposed by integrating exonuclease-III assisted target recycling amplification and repeated-fishing strategy. In the proposed method, exonuclease-III assisted target recycling amplification reaction is adopted to produce a large amount of DNA fragments with fluorescence group at its 5' end in the presence of the target miRNA, which are then repeatedly fished out from the reaction mixture by a gold foil modified with a capture probe and transferred into a so-called 'product tube'. The amount of the target miRNA can then be determined from the fluorescence measurement of the solution in the 'product tube'. Application to the detection of miRNA-155 in samples of KH-2 and BRSA-2B cells revealed that the proposed method could achieve sensitive and accurate quantification of the target miRNA with a limit of detection of 36 fM and recovery rates in the range from 96.2% to 105%. Its simplicity, sensitivity and resistance to possible fluorescence interferences in complex biological samples make the proposed method a potentially competitive alternative for miRNAs detection in complex biological samples.


Asunto(s)
Técnicas Biosensibles , MicroARNs , ADN , Exodesoxirribonucleasas , Oro , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico
8.
Exp Cell Res ; 396(1): 112242, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866497

RESUMEN

FAM122A is a housekeeping gene and highly conserved in mammals. More recently, we have demonstrated that FAM122A is essential for maintaining the growth of hepatocellular carcinoma cells, in which we unexpectedly found that FAM122A deletion increases γH2AX protein level, suggesting that FAM122A may participate in the regulation of DNA homeostasis or stability. In this study, we continued to investigate the potential role of FAM122A in DNA damage and/or repair. We found that CRISPR/Cas9-mediated FAM122A deletion enhances endogenous DNA damages in cancer cells but not in normal cells, demonstrating a significant increase in γH2AX protein and foci formation of γH2AX and 53BP1, as well as DNA breaks by comet assay. Further, we found that FAM122A deletion greatly increases TOP2α protein level, and significantly and specifically enhances TOP2 poisons (etoposide and doxorubicin)-induced DNA damage effects in cancer cells. Moreover, FAM122A is found to be interacted with TOP2α, instead of TOP2ß. However, FAM122A knockout doesn't affect the intracellular ROS levels and the process of DNA repair after removal of etoposide with short-term stimulation, suggesting that FAM122A deletion-enhanced DNA damage does not result from endogenous overproduction of ROS and/or impairment of DNA repair ability. Collectively, our study provides the first demonstration that FAM122A is critical for maintaining DNA stability probably by modulating TOP2α protein, and FAM122A deletion combined with TOP2-targeted drugs may represent a potential novel chemotherapeutic strategy for cancer patients.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/genética , Antineoplásicos/farmacología , Apoptosis/genética , Línea Celular Tumoral , Daño del ADN , Reparación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Neoplasias/metabolismo , Doxorrubicina/farmacología , Etopósido/farmacología , Fibroblastos , Eliminación de Gen , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Fosfoproteínas/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Inhibidores de Topoisomerasa II/farmacología , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
9.
Stem Cell Reports ; 15(3): 721-734, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32763160

RESUMEN

FAM122A is a highly conserved housekeeping gene, but its physiological and pathophysiological roles remain greatly elusive. Based on the fact that FAM122A is highly expressed in human CD71+ early erythroid cells, herein we report that FAM122A is downregulated during erythroid differentiation, while its overexpression significantly inhibits erythrocytic differentiation in primary human hematopoietic progenitor cells and erythroleukemia cells. Mechanistically, FAM122A directly interacts with the C-terminal zinc finger domain of GATA1, a critical transcriptional factor for erythropoiesis, and reduces GATA1 chromatin occupancy on the promoters of its target genes, thus resulting in the decrease of GATA1 transcriptional activity. The public datasets show that FAM122A is abnormally upregulated in patients with ß-thalassemia. Collectively, our results demonstrate that FAM122A plays an inhibitory role in the regulation of erythroid differentiation, and it would be a potentially therapeutic target for GATA1-related dyserythropoiesis or an important regulator for amplifying erythroid cells ex vivo.


Asunto(s)
Diferenciación Celular , Células Eritroides/citología , Células Eritroides/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Antígenos CD34/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , ADN/metabolismo , Regulación hacia Abajo/genética , Células Eritroides/efectos de los fármacos , Eritropoyetina/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Células K562 , Fosfoproteínas/química , Unión Proteica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Dedos de Zinc
10.
Exp Cell Res ; 387(1): 111714, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711919

RESUMEN

FAM122A is a highly conserved protein in mammals, however its function is still largely unknown so far. In this study, we investigated the potential role of FAM122A in hepatocellular carcinoma (HCC). By analyzing HCC patient cohorts from RNA sequencing datasets, we found the expression level of FAM122A mRNA is significantly upregulated in HCC patients. Moreover, this abnormally higher expression pattern of FAM122A protein was also found in partial HCC tumor tissues, compared with the normal parts. Further, we demonstrated that CRISPR/Cas9-mediated FAM122A knockout significantly inhibits the growth, clonogenic potential and xenografts of HCC cells, induces cell cycle arrest and reduces the expression of proliferation-related genes. Interestingly, FAM122A deletion significantly enhances the cytotoxicity effect of Doxorubicin (Dox), a drug used in standard chemotherapy in HCC patients. In contrary, overexpression of FAM122A not only promotes HCC cell growth, but also inhibits Dox-induced DNA damage and cell death. Considering that FAM122A is previously identified as an endogenous inhibitor of PP2A, we asked whether FAM122A regulating HCC cell growth is associated with PP2A. The results showed FAM122A can also modulate PP2A activity in HCC cells although the modulated effect is relatively slight, however, treatment with a PP2A inhibitor okadaic acid did not rescue the inhibitory effects of cell growth and proliferation in FAM122A deletion cells, indicating that FAM122A may support HCC cell growth independent of its ability to modulate PP2A. Collectively, these results suggest that FAM122A is required for maintaining HCC cell growth, and its elimination combined with chemotherapy may represent a potential novel therapeutic strategy for HCC patients.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Doxorrubicina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Fosfoproteínas/genética , Eliminación de Secuencia/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Lett ; 454: 158-170, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30981758

RESUMEN

Long noncoding RNA HULC is identified and highly expressed in hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) is a key driver of liver cancer. In the present study, we found that HULC remarkably elevated the levels of HBeAg, HBsAg, HBcAg, pgRNA, HBx, HBV DNA and covalently closed circular DNA (cccDNA), which activated the HBV replication in HBV-expressing hepatoma cells or de novo HBV-infected cell lines (PHH, HepG2-NTCP and dHepaRG). Mechanistically, HULC enhanced HBV cccDNA stability by down-regulating the APOBEC3B in hepatoma cells. HULC significantly up-regulated microRNA-539, which targeted the 3'UTR of APOBEC3B mRNA. Luciferase reporter gene assays revealed a putative STAT3-binding site located in the upstream of miR-539 promoter. Moreover, we identified that HULC was able to elevate HBx, which co-activated the STAT3 to stimulate the miR-539 promoter. Then, miR-539 down-regulated APOBEC3B and promoted HBV replication. Functionally, HULC enhanced the growth of hepatoma cells by activating HBV in vitro and in vivo, which could be blocked by overexpressing APOBEC3B. In conclusion, HULC activates HBV by modulating HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related HCC.


Asunto(s)
Carcinoma Hepatocelular/virología , Citidina Desaminasa/metabolismo , Neoplasias Hepáticas/virología , MicroARNs/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Transactivadores/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Regulación hacia Abajo , Células Hep G2 , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/genética , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Proteínas Reguladoras y Accesorias Virales , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA