Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Nat Commun ; 15(1): 7613, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223132

RESUMEN

Lattice oxygen in metal oxides plays an important role in the reaction of diesel oxidation catalysts, but the atomic-level understanding of structural evolution during the catalytic process remains elusive. Here, we develop a Mn2O3/SmMn2O5 catalyst using a non-stoichiometric exsolution method to explore the roles of lattice oxygen in NO oxidation. The enhanced covalency of Mn-O bond and increased electron density at Mn3+ sites, induced by the interface between exsolved Mn2O3 and mullite, lead to the formation of highly active lattice oxygen adjacent to Mn3+ sites. Near-ambient pressure X-ray photoelectron and absorption spectroscopies show that the activated lattice oxygen enables reversible changes in Mn valence states and Mn-O bond covalency during redox cycles, reducing energy barriers for NO oxidation and promoting NO2 desorption via the cooperative Mars-van Krevelen mechanism. Therefore, the Mn2O3/SmMn2O5 exhibits higher NO oxidation activity and better resistance to hydrothermal aging compared to a commercial Pt/Al2O3 catalyst.

2.
Sci Rep ; 14(1): 20551, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232064

RESUMEN

Silicate has been proven to be highly-effective at immobilizing soil heavy metals, but the effects of silicate stabilizers on rice grain cadmium (Cd) reduction and rice quality under field conditions are not clear. In this study, a field experiment was conducted over three consecutive years was conducted to examine the Cd reduction in rice grains and to reveal the potential effects of silicate stabilizers on rice grain nutrients, by setting different amounts of bentonite (B), silica‒calcium fertilizer (SC) and zeolite powder (ZP). The results revealed that the application of the B, SC and ZP significantly decreased the soil CaCl2‒Cd concentration (> 39%) and significantly reduced the grain Cd concentration in both early rice (> 70%) and late rice (> 18%) under field conditions; the silicate stabilizers reduced the soil available iron (Fe) but did not limit rice grain Fe nutrition. Additionally, the three silicates promoted rice yield and improved the rice grain Ca and Mg contents; and the application of B increased the amylose concentration of the late rice grains. In conclusion, high amounts of silicate stabilizers did not adversely influence the soil conventional nutrient indices, rice minerals or rice taste, but changes in rice selenium content need attention. Overall, in comparison with lime, silicate stabilizers can improve not only the safety of rice but also the nutritional and taste qualities of rice and are more eco-friendly for long-term use in soil.


Asunto(s)
Cadmio , Fertilizantes , Oryza , Silicatos , Suelo , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Cadmio/análisis , Suelo/química , Fertilizantes/análisis , Contaminantes del Suelo/análisis , Bentonita , Grano Comestible , Zeolitas/farmacología
3.
Small ; : e2406179, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221682

RESUMEN

For BixSb2- xTe3 (BST) in thermoelectric field, the element ratio is easily influenced by the chemical environment, deviating from the stoichiometric ratio and giving rise to various intrinsic defects. In P-type polycrystalline BST, SbTe and BiTe are the primary forms of defects. Defect engineering is a crucial strategy for optimizing the electrical transport performance of Bi2Te3-based materials, but achieving synchronous improvement of thermal performance is challenging. In this study, mesoporous SiO2 is utilized to successfully mitigate the adverse impacts of vacancy defects, resulting in an enhancement of the electrical transport performance and a pronounced reduction in thermal conductivity. Crystal and the microstructure of the continuous modulation contribute to the effective phonon-electronic decoupling. Ultimately, the peak zT of Bi0.4Sb1.6Te3/0.8 wt% SiO2 (with a pore size of 4 nm) nanocomposites reaches as high as 1.5 at 348 K, and a thermoelectric conversion efficiency of 6.6% is achieved at ΔT = 222.7 K. These results present exciting possibilities for the realization of defect regulation in porous materials and hold reference significance for other material systems.

4.
Adv Mater ; : e2407717, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113326

RESUMEN

The design of a low-iridium-loading anode catalyst layer with high activity and durability is a key challenge for a proton exchange membrane water electrolyzer (PEMWE). Here, the synthesis of a novel supported IrO2 nanocatalyst with a tri-layered structure, dubbed IrO2@TaOx@TaB that is composed of ultrasmall IrO2 nanoparticles anchored on amorphous TaOx overlayer of TaB nanorods is reported. The composite electrocatalyst shows great activity and stability toward the oxygen evolution reaction (OER) in acid, thanks to its dual-interface structural feature. The electronic interaction in IrO2/TaOx interface can regulate the coverage of surface hydroxyl groups, the Ir3+/ Ir4+ ratio, and the redox peak potential of IrO2 for enhancing OER activity, while the dense TaOx overlayer can prevent further oxidation of TaB substrate and stabilize the IrO2 catalytic layers for improving structural stability during OER. The IrO2@TaOx@TaB can be used to fabricate an anode catalyst layer of PEMWE with an iridium-loading as low as 0.26 mg cm-2. The low-iridium-loading PEMWE delivers high current densities at low cell voltages (e.g., 3.9 A cm-2@2.0 V), and gives excellent activity retention for more than 1500 h at 2.0 A cm-2 current density.

5.
Nat Commun ; 15(1): 7477, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209896

RESUMEN

Achieving large-scale electrochemical CO2 reduction to multicarbon products with high selectivity using membrane electrode assembly (MEA) electrolyzers in neutral electrolyte is promising for carbon neutrality. However, the unsatisfactory multicarbon products selectivity and unclear reaction mechanisms in an MEA have hindered its further development. Here, we report a strategy that manipulates the interfacial microenvironment of Cu nanoparticles in an MEA to suppress hydrogen evolution reaction and enhance C2H4 conversion. In situ multimodal characterizations consistently reveal well-stabilized Cuδ+-OH species as active sites during MEA testing. The OH radicals generated in situ from water create a locally oxidative microenvironment on the copper surface, stabilizing the Cuδ+ species and leading to an irreversible and asynchronous change in morphology and valence, yielding high-curvature nanowhiskers. Consequently, we deliver a selective C2H4 production with a Faradaic efficiency of 55.6% ± 2.8 at 316 mA cm-2 in neutral media.

6.
Adv Mater ; : e2407534, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973643

RESUMEN

Understanding the water-involved mechanism on metal oxide surface and the dynamic interaction of water with active sites is crucial in solving water poisoning in catalytic reactions. Herein, this work solves this problem by designing the water-promoted function of metal oxides in the ethanol oxidation reaction. In situ multimodal spectroscopies unveil that the competitive adsorption of water-dissociated *OH species with O2 at Sn active sites results in water poisoning and the sluggish proton transfer in CoO-SnO2 imparts water-resistant effect. Carbon material as electron donor and proton transport channel optimizes the Co active sites and expedites the reverse hydrogen spillover from CoO to SnO2. The water-promoted function arises from spillover protons facilitating O2 activation on the SnO2 surface, leading to crucial *OOH intermediate formation for catalyzing C-H and C-C cleavage. Consequently, the tailored CoO-C-SnO2 showcases a remarkable 60-fold enhancement in ethanol oxidation reaction compared to bare SnO2 under high-humidity conditions.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38865183

RESUMEN

A Gram-stain-negative, aerobic, non-spore-forming, nonmotile, rod-shaped, and yellow-pigmented bacterium, designated strain JXAS1T, was isolated from a freshwater sample collected from Poyang Lake in China. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the isolate belonged to the genus Flavobacterium, being closest to Flavobacterium pectinovorum DSM 6368T (98.61 %). The genome size of strain JXAS1T was 4.66 Mb with DNA G+C content 35.7 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain JXAS1T and its closest relatives were below the threshold values of 95 and 70 %, respectively. The strain contained menaquinone 6 (MK-6) as the predominant menaquinone and the major polar lipids were phosphatidylethanolamine, one unidentified glycolipid, and one unidentified polar lipid. The major fatty acids (>5 %) were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0, iso-C17 : 0 3OH, iso-C15 : 0 3OH, and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). Based on phylogenetic, genotypic, and phenotypic evidence, the isolated strain represents a new species in the genus Flavobacterium, and the name Flavobacterium poyangense is proposed. The type strain is JXAS1T (=GDMCC 1.1378T=KCTC 62719T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Lagos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , Lagos/microbiología , China , ARN Ribosómico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , ADN Bacteriano/genética , Fosfatidiletanolaminas , Glucolípidos/análisis , Fosfolípidos/análisis
9.
J Am Chem Soc ; 146(21): 14493-14504, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743872

RESUMEN

High-entropy oxides (HEOs), featuring infinite chemical composition and exceptional physicochemical properties, are attracting much attention. The configurational entropy caused by a component disorder of HEOs is popularly believed to be the main driving force for thermal stability, while the role of vibrational entropy in the thermodynamic landscape has been neglected. In this study, we systematically investigated the vibrational entropy of multicomponent rutile oxides (including Fe0.5Ta0.5O2, Fe0.333Ti0.333Ta0.333O2, Fe0.25Ti0.25Ta0.25Sn0.25O2, and Fe0.21Ti0.21Ta0.21Sn0.21Ge0.16O2) by precise heat capacity measurements. It is found that vibrational entropy gradually decreases with increasing component disorder, beyond what one could expect from an equilibrium thermodynamics perspective. Moreover, all multicomponent rutile oxides exhibit a positive excess vibrational entropy at 298.15 K. Upon examinations of configuration disorder, size mismatch, phase transition, and polyhedral distortions, we demonstrate that the excess vibrational entropy plays a pivotal role in lowering the crystallization temperature of multicomponent rutile oxides. These findings represent the first experimental confirmation of the role of lattice vibrations in the thermodynamic landscape of rutile HEOs. In particular, vibrational entropy could serve as a novel descriptor to guide the predictive design of multicomponent oxide materials.

10.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38620050

RESUMEN

Understanding the structure-performance relationships of a frustrated Lewis pair (FLP) at the atomic level is key to yielding high efficiency in activating chemically "inert" molecules into value-added products. A sound strategy was developed herein through incorporating oxygen defects into a Zr-based metal-organic layer (Zr-MOL-D) and employing Lewis basic proximal surface hydroxyls for the in situ formation of solid heterogeneous FLP (Zr4-δ-VO-Zr-OH). Zr-MOL-D exhibits a superior CO2 to CO conversion rate of 49.4 µmol g-1 h-1 in water vapor without any sacrificing agent or photosensitizer, which is about 12 times higher than that of pure MOL (Zr-MOL-P), with extreme stability even after being placed for half a year. Theoretical and experimental results reveal that the introduction of FLP converts the process of the crucial intermediate COOH* from an endothermic reaction to an exothermic spontaneous reaction. This work is expected to provide new prospects for developing efficient MOL-based photocatalysts in FLP chemistry through a sound defect-engineering strategy.

11.
Small ; 20(31): e2312148, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38438906

RESUMEN

Iron-based perovskite air electrodes for protonic ceramic cells (PCCs) offer broad application prospects owing to their reasonable thermomechanical compatibility and steam tolerance. However, their insufficient electrocatalytic activity has considerably limited further development. Herein, oxygen-vacancy-rich BaFe0.6Ce0.2Sc0.2O3-δ (BFCS) perovskite is rationally designed by a facile Sc-substitution strategy for BaFe0.6Ce0.4O3-δ (BFC) as efficient and stable air electrode for PCCs. The BFCS electrode with an optimized Fe 3d-eg orbital occupancy and more oxygen vacancies exhibits a polarization resistance of ≈ 0.175 Ω cm2 at 600 °C, ≈ 1/3 of the BFC electrode (≈0.64 Ω cm2). Simultaneously, BFCS shows favorable proton uptake with a low proton defect formation enthalpy (- 81 kJ mol-1). By combining soft X-ray absorption spectroscopy and electrical conductivity relaxation studies, it is revealed that the enhancement of Fe4+-O2- interactions in BFCS promotes the activation and mobility of lattice oxygen, triggering the activity of BFCS in both oxygen reduction and evolution reactions (ORR/OER). The single cell achieves encouraging output performance in both fuel cell (1.55 W cm-2) and electrolysis cell (-2.96 A cm-2 at 1.3 V) modes at 700 °C. These results highlight the importance of activating lattice oxygen in air electrodes of PCCs.

12.
J Am Chem Soc ; 146(11): 7467-7479, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446421

RESUMEN

Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.

14.
Small ; 20(15): e2304574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009795

RESUMEN

Direct selective transformation of greenhouse methane (CH4) to liquid oxygenates (methanol) can substitute energy-intensive two-step (reforming/Fischer-Tropsch) synthesis while creating environmental benefits. The development of inexpensive, selective, and robust catalysts that enable room temperature conversion will decide the future of this technology. Single-atom catalysts (SACs) with isolated active centers embedded in support have displayed significant promises in catalysis to drive challenging reactions. Herein, high-density Ni single atoms are developed and stabilized on carbon nitride (NiCN) via thermal condensation of preorganized Ni-coordinated melem units. The physicochemical characterization of NiCN with various analytical techniques including HAADF-STEM and X-ray absorption fine structure (XAFS) validate the successful formation of Ni single atoms coordinated to the heptazine-constituted CN network. The presence of uniform catalytic sites improved visible absorption and carrier separation in densely populated NiCN SAC resulting in 100% selective photoconversion of (CH4) to methanol using H2O2 as an oxidant. The superior catalytic activity can be attributed to the generation of high oxidation (NiIII═O) sites and selective C─H bond cleavage to generate •CH3 radicals on Ni centers, which can combine with •OH radicals to generate CH3OH.

15.
Small ; 20(22): e2310266, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098346

RESUMEN

The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical Mössbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm-2 for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.

16.
iScience ; 26(12): 108435, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38077124

RESUMEN

Layered double hydroxides (LDHs) are widely used in catalytic field, especially in photocatalysis, benefiting from the ultrathin 2D structure and luxuriant surface functional groups. However, the wide band gap and low utilization rate of solar spectrum affect their photocatalytic performance. Herein, we integrated n-type CoAl-LDH with p-type Cu2O nanoparticles to construct a p-n heterojunction with a strong built-in electric field, which can prevent photoinduced electron-hole pairs from recombination as well as facilitate charge transfer. With the X-ray photoelectron spectroscope and in situ Fourier transform infrared spectroscopy, we confirmed the charge transfer under light illumination complying with the type II-scheme mechanism and analyzed the intermediates during photocatalytic CO2 reduction reaction (CO2RR). The highest yields reached 320.9 µmol h-1 g-1 for CoAl-LDH@Cu2O-60 (LC-60) under 1 h light irradiation, which was about 1.6 times than the pristine CoAl-LDH. The sample also exhibited excellent stability which maintained 84.1% of initial performance after 4 circulations.

17.
Injury ; 54(12): 111155, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919114

RESUMEN

PURPOSE: To compare the clinical efficacy of two surgical interventions in treating advanced stages TB of the pubis and pubic symphysis. METHODS: Between June 2010 and January 2020, 33 cases of the advanced pubis and pubic symphysis TB were treated with a one-stage debridement procedure (debridement only group, n = 15) or a one-stage debridement with bone grafting and plate fixation procedure (debridement + plating group, n = 18). The visual analog scale (VAS) score, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), operation time, intraoperative blood loss, complications, time of bone graft fusion, and improvement in the mental component summary (MCS) and physical component summary (PCS) of Short Form-36 (SF-36) were compared and analyzed. RESULTS: All patients were followed for 24.9 (SD 1.6) months. All patients were completely cured of the pubis and pubic symphysis TB with no recurrence. There were no significant differences (P >0.05) between the two groups in terms of age, follow-up period and intraoperative blood loss. The post-operative VAS scores, ESR and CRP levels, PCS and MCS scores of two groups significantly improved compared to pre-therapy. The mean operation time in debridement + plating group was 140.9 (43.2) min, which was significantly longer than in debridement only group [94.9(21.8) min, P < 0.01]. The final follow-up (FFU) indices of the VAS score in debridement only group were higher than those in debridement + plating group [1.9 (0.8) vs 1.3 (0.5), P=0.012]. A satisfactory average bony fusion time of 12.2 (3.3) months was achieved in debridement + plating group . CONCLUSIONS: A one-stage debridement, bone grafting, and reconstruction plate fixation procedure achieved reconstruction of the integrity and stability of the pelvic ring, pain relief, and rapid cure of bone TB. This procedure is a safe and effective treatment option for advanced pubis and pubic symphysis TB.


Asunto(s)
Sínfisis Pubiana , Fusión Vertebral , Tuberculosis de la Columna Vertebral , Humanos , Adulto , Estudios Retrospectivos , Pérdida de Sangre Quirúrgica , Tuberculosis de la Columna Vertebral/cirugía , Hueso Púbico , Sínfisis Pubiana/cirugía , Vértebras Torácicas/cirugía , Fusión Vertebral/métodos , Desbridamiento/métodos , Resultado del Tratamiento , Vértebras Lumbares/cirugía
18.
Gut Microbes ; 15(2): 2263209, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37786296

RESUMEN

Irritable bowel syndrome is a common functional gastrointestinal disorder, and it has been shown that the etiology of irritable bowel syndrome is a multifactorial complex of neurological, inflammatory, and immunological changes. There is growing evidence of low-grade chronic inflammation in irritable bowel patients. The peripheral action response of their intestinal immune factors is integrated into the central nervous system, while the microbiota interacts with the brain-gut axis contributing to the development of low-grade chronic inflammation. The objective of this review is to present a discussion about the impact of immune-brain-gut axis-inflammation interactions on irritable bowel syndrome, its clinical relevance in the course of irritable bowel syndrome disease, and possible therapeutic modalities.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Síndrome del Colon Irritable , Humanos , Eje Cerebro-Intestino , Microbioma Gastrointestinal/fisiología , Encéfalo , Inflamación
19.
Environ Health Perspect ; 131(10): 107004, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796530

RESUMEN

BACKGROUND: Commonly encountered nontraumatic, moderate noise is increasingly implicated in anxiety; however, the neural substrates underlying this process remain unclear. OBJECTIVES: We investigated the neural circuit mechanism through which chronic exposure to moderate-level noise causes anxiety-like behaviors. METHODS: Mice were exposed to chronic, moderate white noise [85 decibel (dB) sound pressure level (SPL)], 4 h/d for 4 wk to induce anxiety-like behaviors, which were assessed by open field, elevated plus maze, light-dark box, and social interaction tests. Viral tracing, immunofluorescence confocal imaging, and brain slice patch-clamp recordings were used to characterize projections from auditory brain regions to the lateral amygdala. Neuronal activities were characterized by in vivo multielectrode and fiber photometry recordings in awake mice. Optogenetics and chemogenetics were used to manipulate specific neural circuitry. RESULTS: Mice chronically (4 wk) exposed to moderate noise (85 dB SPL, 4 h/d) demonstrated greater neuronal activity in the lateral amygdala (LA), and the LA played a critical role in noise-induced anxiety-like behavior in these model mice. Viral tracing showed that the LA received monosynaptic projections from the medial geniculate body (MG) and auditory cortex (ACx). Optogenetic excitation of the MG→LA or ACx→LA circuits acutely evoked anxiety-like behaviors, whereas their chemogenetic inactivation abolished noise-induced anxiety-like behavior. Moreover, mice chronically exposed to moderate noise were more susceptible to acute stress, with more neuronal firing in the LA, even after noise withdrawal. DISCUSSION: Mice exposed to 4 wk of moderate noise (85 dB SPL, 4 h/d) demonstrated behavioral and physiological differences compared to controls. The neural circuit mechanisms involved greater excitation from glutamatergic neurons of the MG and ACx to LA neurons under chronic, moderate noise exposure, which ultimately promoted anxiety-like behaviors. Our findings support the hypothesis that nontraumatic noise pollution is a potentially serious but unrecognized public health concern. https://doi.org/10.1289/EHP12532.


Asunto(s)
Corteza Auditiva , Ruido , Ratones , Animales , Ruido/efectos adversos , Ansiedad , Corteza Auditiva/fisiología , Neuronas
20.
Sci Rep ; 13(1): 16684, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794091

RESUMEN

This retrospective study aimed to compare the clinical efficacy of the posterior procedure with the combined anterior and posterior procedure in the surgical management of lumbar Brucella spondylitis. From January 2015 to June 2020, a total of 62 patients presenting with lumbar Brucella spondylitis underwent either one-stage posterior pedicle fixation, debridement, and interbody fusion (Group A, n = 33) or anterior debridement, bone grafting, and posterior instrumentation (Group B, n = 29). All patients were followed up for an average of 25.4 ± 1.5 months and achieved complete resolution of lumbar Brucella spondylitis. No significant differences between the groups were observed in terms of age or pre-operative, three-month postoperative and final follow-up indices of the VAS, ESR, CRP, lordosis angle, ODI scores, fusion time, and time of serum agglutination test conversion to negative (P > 0.05). Each patient exhibited notable improvements in neurological function, as assessed by the JOA score rating system. Group A demonstrated significantly shorter operative duration, intraoperative blood loss, and hospital stay compared to Group B (P < 0.05). Superficial wound infection was observed in one case in Group A, whereas Group B experienced one case each of intraoperative peritoneal rupture, postoperative ileus, iliac vein injury, and superficial wound infection. This study supports the efficacy of both surgical interventions in the treatment of lumbar Brucella spondylitis, with satisfactory outcomes. However, the posterior approach demonstrated advantages, including reduced surgical time, diminished blood loss, shorter hospital stays, and fewer perioperative complications. Consequently, the one-stage posterior pedicle fixation, debridement, and interbody fusion represent a superior treatment option.


Asunto(s)
Brucella , Brucelosis , Fusión Vertebral , Espondilitis , Infección de Heridas , Humanos , Adulto , Estudios Retrospectivos , Vértebras Lumbares/cirugía , Fusión Vertebral/métodos , Desbridamiento/métodos , Espondilitis/cirugía , Brucelosis/cirugía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA