Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Clin Med Insights Oncol ; 18: 11795549241271691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211563

RESUMEN

Background: The significance of CXCL5 in pancreatic cancer is unclear, although it has been implicated in the malignant process of many different types of cancer. Research on the impact of CXCL5 on immune cell infiltration and the malignant phenotype of pancreatic cancer is needed. This study aimed to examine the connection between CXCL5 expression and immune cell infiltration and the malignant phenotype of pancreatic cancer. Methods: Tissue samples and clinical information were collected from 90 patients with pancreatic cancer. Tumour tissues and adjacent tissues were made into a tissue microarray and stained for immunohistochemistry analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to measure the expression level of CXCL5. CXCL5-overexpressing/CXCL5-knockdown cell lines were constructed via transfection for cytological experiments. CCK-8, cell apoptosis, cell cycle, cell invasion, and cell colony formation assays were used to detect the effect of CXCL5 on the malignant phenotype of pancreatic cancer cells. Finally, a mouse model of pancreatic cancer was constructed for in vivo verification. Results: Compared with control cells, pancreatic cancer cells overexpressing CXCL5 exhibited increased proliferation, migration, and invasion but decreased apoptosis. Conversely, knockdown of CXCL5 did not enhance the malignant phenotype of pancreatic cancer cells. Spearman correlation analysis indicated that there was a significant negative correlation between CXCL5 levels and the CD8 IRS. However, there was a significant positive correlation between FOXP3 IRS and CXCL5 levels. Conclusions: CXCL5 is highly expressed in pancreatic cancer and promotes the malignant phenotype of pancreatic cancer cells. CXCL5 is associated with immunosuppressive FOXP3 + T-cell infiltration, which facilitates the formation of an immunosuppressive microenvironment (with low CD8 + T-cell infiltration).

2.
BMC Med Res Methodol ; 24(1): 192, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217327

RESUMEN

BACKGROUND: Many existing healthcare ranking systems are notably intricate. The standards for peer review and evaluation often differ across specialties, leading to contradictory results among various ranking systems. There is a significant need for a comprehensible and consistent mode of specialty assessment. METHODS: This quantitative study aimed to assess the influence of clinical specialties on the regional distribution of patient origins based on 10,097,795 outpatient records of a large comprehensive hospital in South China. We proposed the patient regional index (PRI), a novel metric to quantify the regional influence of hospital specialties, using the principle of representative points of a statistical distribution. Additionally, a two-dimensional measure was constructed to gauge the significance of hospital specialties by integrating the PRI and outpatient volume. RESULTS: We calculated the PRI for each of the 16 specialties of interest over eight consecutive years. The longitudinal changes in the PRI accurately captured the impact of the 2017 Chinese healthcare reforms and the 2020 COVID-19 pandemic on hospital specialties. At last, the two-dimensional assessment model we devised effectively illustrates the distinct characteristics across hospital specialties. CONCLUSION: We propose a novel, straightforward, and interpretable index for quantifying the influence of hospital specialties. This index, built on outpatient data, requires only the patients' origin, thereby facilitating its widespread adoption and comparison across specialties of varying backgrounds. This data-driven method offers a patient-centric view of specialty influence, diverging from the traditional reliance on expert opinions. As such, it serves as a valuable augmentation to existing ranking systems.


Asunto(s)
Macrodatos , COVID-19 , Humanos , China , COVID-19/epidemiología , SARS-CoV-2 , Instituciones de Atención Ambulatoria/estadística & datos numéricos , Instituciones de Atención Ambulatoria/normas , Pandemias , Medicina/estadística & datos numéricos , Especialización/estadística & datos numéricos , Pacientes Ambulatorios/estadística & datos numéricos , Reforma de la Atención de Salud
3.
Immun Inflamm Dis ; 12(8): e1348, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105572

RESUMEN

BACKGROUND: Mecapegfilgrastim, a long-acting granulocyte-colony stimulating factor has been approved for reducing the incidence of infection, particularly febrile neutropenia (FN), in China. OBJECTIVE: We conducted a multicenter prospective observational study to examine the safety and effectiveness of mecapegfilgrastim in preventing neutropenia in gastrointestinal patients receiving the chemotherapy, including S-1/capecitabine-based regimens or the fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI)/fluorouracil, leucovorin, and oxaliplatin (FOLFOX)/fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFIRINOX) regimens. METHOD: Five hundred and sixty-one gastrointestinal patients from 40 sites across China, between May 2019 and November 2021, were included. The administration of mecapegfilgrastim was prescribed at the discretion of local physicians. RESULTS: The most common adverse drug reactions (ADRs) of any grade for all patients was increased white blood cells (2.9%). Grade 3/4 ADRs were observed for anemia (0.2%), decreased white blood cells (0.2%), and decreased neutrophil count (0.2%). Among the 116 patients who received S-1/capecitabine-based chemotherapy throughout all cycles, ADRs of any grade included anemia (1.7%), myalgia (0.9%), and increased alanine aminotransferase (0.9%). No grade 3/4 ADRs were observed. In 414 cycles of patients who underwent S-1/capecitabine-based regimens, only one (0.2%) cycle experienced grade 4 neutropenia. In the FOLFIRINOX, FOLFOXIRI, and FOLFOX chemotherapy regimens, grade 4 neutropenia occurred in one (2.7%) of 37 cycles, four (4.7%) of 85 cycles, and two (1.2%) of 167 cycles, respectively. CONCLUSION: In a real-world setting, mecapegfilgrastim has proven effective in preventing severe neutropenia in gastrointestinal patients following chemotherapy. This includes commonly used moderate or high-risk FN regimens or regimens containing S1/capecitabine, all of which have demonstrated favorable efficacy and safety profiles.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Fluorouracilo , Neoplasias Gastrointestinales , Neutropenia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anciano , Neoplasias Gastrointestinales/tratamiento farmacológico , Neutropenia/prevención & control , Neutropenia/inducido químicamente , Neutropenia/epidemiología , Adulto , Fluorouracilo/efectos adversos , Fluorouracilo/uso terapéutico , Leucovorina/uso terapéutico , Leucovorina/efectos adversos , Irinotecán/uso terapéutico , Irinotecán/efectos adversos , Oxaliplatino/efectos adversos , Oxaliplatino/uso terapéutico , China/epidemiología
4.
Materials (Basel) ; 17(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39203237

RESUMEN

The potential applications of stretchable strain sensors in wearable electronics have garnered significant attention. However, developing susceptible stretchable strain sensors for practical applications still poses a considerable challenge. The present study introduces a stretchable strain sensor that utilizes silver nanowires (AgNWs) embedded into a polydimethylsiloxane (PDMS) substrate. The AgNWs have high flexibility and electrical conductivity. A stretchable AgNW/Pat-PDMS conductive film was prepared by arranging nanowires on the surface of PDMS using a simple rod coating method. Depending on the orientation angle, the overlap area between nanowires varies, resulting in different levels of separation under a given strain. Due to the separation of the nanowire and the change in current path geometry, the variation in strain resistance of the sensor can be primarily attributed to these factors. Therefore, precision in strain regulation can be adjusted by altering the angle θ (0°, 60°, or 90°) of the nanowire. At the same time, the stability of the AgNW/Pattern-PDMS (AgNW/Pat-PDMS) conductive film application was verified by preparing a sandwich structure PDMS/AgNW/Pat-PDMS stretchable strain sensor. The sensor exhibited high sensitivity within the operating sensing range (gauge factor (GF) of 15 within ~120% strain), superior durability (20,000 bending cycles and 5000 stretching cycles), and excellent response toward bending.

5.
Oncol Rep ; 52(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39155869

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell invasion assay data shown in Fig. 6B on p. 940, and western blot data featured in Fig. 7B on p. 942, had already appeared in previously published articles written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 933­944, 2021; DOI: 10.3892/or.2020.7905].

6.
J Colloid Interface Sci ; 677(Pt B): 1034-1044, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39178667

RESUMEN

The interfacial effect is important for the tungsten trioxide (WO3)-based anode to achieve superior lithium-ion storage performance. Herein, the interfacial effect was constructed by in-situ surface direct nitridation reaction at 600 â„ƒ for 30 min of the as-synthesis WO3 nanoparticles (WO3/WN). X-ray photoelectron spectroscopy (XPS) analysis confirms evident chemical interaction between WO3 and WN via the interfacial covalent bond (WON). This WO3/WN anode shows a distinct interfacial effect for an efficient interatomic electron migration. Electrochemical kinetic analysis shows enhanced pseudocapacitance contribution. The galvanostatic intermittent titration technique (GITT) result demonstrates improved charge transfer kinetics. Ex-situ X-ray diffraction (XRD) analysis reveals the reversible oxidation and reduction reaction of the WO3/WN anode. The density functional theory (DFT) result shows that the evident interfacial bonding effect can enhance the electrochemical reaction kinetics of the WO3/WN anode. The discharge capacity can reach up to 546.9 mA h g-1 at 0.1 A g-1 after 200 cycles. After 2000 cycles, the capacity retention is approximately 85.97 % at 1.0 A g-1. In addition, the WO3/WN full cell (LiFePO4/C//WO3/WN) demonstrates excellent rate capability and capacity retention ratio. This in-situ surface nitridation strategy is an effective solution for designing an oxide-based anode with good electrochemical performance and beyond.

7.
Ultrason Sonochem ; 109: 107003, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079439

RESUMEN

To develop an environmentally sustainable and efficient extraction method for flavonoids from Moringa oleifera Lam. (M. oleifera) leaves, natural deep eutectic solvents (NADES) with ultrasound-assisted extraction was utilized in this study. After optimization of extraction parameters of NADES, including ultrasonic power, ultrasonic time, and liquid-solid ratio, the extraction yield of ultrasound-assisted NADES (UAN) composed of betaine and urea (Bet-Urea) reached 54.69 ± 0.19 mg RE/g DW, which made a 1.7-fold increase compared to traditional ultrasound-assisted traditional solvent (UATS). UPLC-Q Exactive/MS analysis revealed that M. oleifera leaves flavonoids (MOLF) was mainly composed of Quercetin 3-ß-D-glucoside, Rutin, Kaempferol-3-O-glucoside, Vitexin and Quercetin. Furthermore, the COSMO-RS model was employed to verify the optimal compatibility of solubility and activity coefficient between Bet-Urea and the five primary flavonoids in MOLF. In vitro antioxidant assays verified that MOLF extracted by UAN exhibited superior antioxidant activity compared to MOLF extracted by UATS. Overall, the devised process not only augmented the extraction yield of MOLF but also effectively preserved the bioactive compounds, thus promoting the utilization of green extraction solvents in the food industry.


Asunto(s)
Antioxidantes , Flavonoides , Tecnología Química Verde , Moringa oleifera , Hojas de la Planta , Ondas Ultrasónicas , Hojas de la Planta/química , Flavonoides/aislamiento & purificación , Flavonoides/química , Moringa oleifera/química , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Tecnología Química Verde/métodos , Disolventes Eutécticos Profundos/química , Fraccionamiento Químico/métodos , Solventes/química
8.
New Phytol ; 243(5): 1966-1979, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970455

RESUMEN

The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.


Asunto(s)
Biodiversidad , Cationes , Luz , Nitrógeno , Nitrógeno/metabolismo , Cationes/metabolismo , Suelo/química , Pradera , Plantas/metabolismo , Plantas/efectos de la radiación , Plantas/efectos de los fármacos
9.
Plant Cell Environ ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031093

RESUMEN

The fixation and transfer of biological nitrogen from peanuts to maize in maize-peanut intercropping systems play a pivotal role in maintaining the soil nutrient balance. However, the mechanisms through which root interactions regulate biological nitrogen fixation and transfer remain unclear. This study employed a 15N isotope labelling method to quantify nitrogen fixation and transfer from peanuts to maize, concurrently elucidating key microorganisms and genera in the nitrogen cycle through metagenomic sequencing. The results revealed that biological nitrogen fixation in peanut was 50 mg and transfer to maize was 230 mg when the roots interacted. Moreover, root interactions significantly increased nitrogen content and the activities of protease, dehydrogenase (DHO) and nitrate reductase in the rhizosphere soil. Metagenomic analyses and structural equation modelling indicated that nrfC and nirA genes played important roles in regulating nitrogen fixation and transfer. Bradyrhizobium was affected by soil nitrogen content and DHO, indirectly influencing the efficiency of nitrogen fixation and transfer. Overall, our study identified key bacterial genera and genes associated with nitrogen fixation and transfer, thus advancing our understanding of interspecific interactions and highlighting the pivotal role of soil microorganisms and functional genes in maintaining soil ecosystem stability from a molecular ecological perspective.

10.
Theranostics ; 14(10): 4107-4126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994023

RESUMEN

Rationale: The heterogeneity of tumor cells within the glioblastoma (GBM) microenvironment presents a complex challenge in curbing GBM progression. Understanding the specific mechanisms of interaction between different GBM cell subclusters and non-tumor cells is crucial. Methods: In this study, we utilized a comprehensive approach integrating glioma single-cell and spatial transcriptomics. This allowed us to examine the molecular interactions and spatial localization within GBM, focusing on a specific tumor cell subcluster, GBM subcluster 6, and M2-type tumor-associated macrophages (M2 TAMs). Results: Our analysis revealed a significant correlation between a specific tumor cell subcluster, GBM cluster 6, and M2-type TAMs. Further in vitro and in vivo experiments demonstrated the specific regulatory role of the CEBPB transcriptional network in GBM subcluster 6, which governs its tumorigenicity, recruitment of M2 TAMs, and polarization. This regulation involves molecules such as MCP1 for macrophage recruitment and the SPP1-Integrin αvß1-Akt signaling pathway for M2 polarization. Conclusion: Our findings not only deepen our understanding of the formation of M2 TAMs, particularly highlighting the differential roles played by heterogeneous cells within GBM in this process, but also provided new insights for effectively controlling the malignant progression of GBM.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT , Glioblastoma , Microambiente Tumoral , Macrófagos Asociados a Tumores , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Animales , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Ratones , Línea Celular Tumoral , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Macrófagos/metabolismo
11.
Stat Med ; 43(20): 3761-3777, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38897797

RESUMEN

The analysis of streaming time-to-event cohorts has garnered significant research attention. Most existing methods require observed cohorts from a study sequence to be independent and identically sampled from a common model. This assumption may be easily violated in practice. Our methodology operates within the framework of online data updating, where risk estimates for each cohort of interest are continuously refreshed using the latest observations and historical summary statistics. At each streaming stage, we introduce parameters to quantify the potential discrepancy between batch-specific effects from adjacent cohorts. We then employ penalized estimation techniques to identify nonzero discrepancy parameters, allowing us to adaptively adjust risk estimates based on current data and historical trends. We illustrate our proposed method through extensive empirical simulations and a lung cancer data analysis.


Asunto(s)
Simulación por Computador , Neoplasias Pulmonares , Humanos , Medición de Riesgo/métodos , Estudios de Cohortes , Modelos Estadísticos , Factores de Tiempo
12.
Comput Methods Programs Biomed ; 251: 108212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754327

RESUMEN

BACKGROUND AND OBJECTIVE: There is a rising interest in exploiting aggregate information from external medical studies to enhance the statistical analysis of a modestly sized internal dataset. Currently available software packages for analyzing survival data with a cure fraction ignore the potentially available auxiliary information. This paper aims at filling this gap by developing a new R package CureAuxSP that can include subgroup survival probabilities extracted outside into an interested internal survival dataset. METHODS: The newly developed R package CureAuxSP provides an efficient approach for information synthesis under the mixture cure models, including Cox proportional hazards mixture cure model and the accelerated failure time mixture cure model as special cases. It focuses on synthesizing subgroup survival probabilities at multiple time points and the underlying method development lies in the control variate technique. Evaluation of homogeneity assumption based on a test statistic can be automatically carried out by our package and if heterogeneity does exist, the original outputs can be further refined adaptively. RESULTS: The R package CureAuxSP provides a main function SMC.AxuSP() that helps us adaptively incorporate external subgroup survival probabilities into the analysis of an internal survival data. We also provide another function Print.SMC.AuxSP() for printing the results with a better presentation. Detailed usages are described, and implementations are illustrated with numerical examples, including a simulated dataset with a well-designed data generating process and a real breast cancer dataset. Substantial efficiency gain can be observed by our results. CONCLUSIONS: Our R package CureAuxSP can make the wide applications of utilizing auxiliary information possible. It is anticipated that the performance of mixture cure models can be improved for the survival data with a cure fraction, especially for those with small sample sizes.


Asunto(s)
Probabilidad , Modelos de Riesgos Proporcionales , Programas Informáticos , Humanos , Análisis de Supervivencia , Modelos Estadísticos , Simulación por Computador , Algoritmos , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia
13.
Cytokine ; 179: 156628, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38704962

RESUMEN

BACKGROUND: The expression level of apolipoprotein E (APOE) in pancreatic ductal adenocarcinoma (PDAC) and its effect on the prognosis of PDAC patients are not clear. The effect of APOE on the immune status of patients with PDAC has not been elucidated. METHODS: We obtained pancreatic cancer data from the TCGA and GETx databases. Patients with PDAC who underwent pancreatic surgery at the Second Affiliated Hospital of Jiaxing University between 2012 and 2021 were included. Clinical pathological data were recorded, plasma APOE levels were measured, and tissue samples were collected. A tissue microarray was generated using the collected tissue samples. APOE and CD4 staining was performed to determine immunoreactive scores (IRSs). The expression of APOE in the plasma and tumour tissues of pancreatic cancer patients was analysed and compared. The correlations between plasma APOE levels, tissue APOE levels and clinicopathological characteristics were analysed. Survival prognosis was analysed using Kaplan-Meier survival analysis and Cox multivariate regression analysis. The correlations between APOE expression levels and immune biomarkers and immune cells were further analysed. Single-cell analysis of APOE distribution in various cells was performed on the TISCH website. RESULTS: APOE was highly expressed in the tumour tissue of pancreatic cancer patients, and high plasma APOE levels were associated with poor prognosis. Females, patients with high-grade disease and patients with pancreatic head carcinoma had high plasma APOE levels. High APOE expression in tumour tissues was associated with good prognosis. Mononuclear macrophages in the pancreatic cancer microenvironment primarily expressed APOE. APOE levels positively correlated with immune biomarkers, such as CD8A, PDCD1, GZMA, CXCL10, and CXCL9, in the tumour microenvironment. APOE promoted CD4 + T cell or dendritic cell infiltration in the tumour microenvironment. CONCLUSIONS: APOE may affect the occurrence and development of pancreatic cancer by regulating the infiltration of immune cells in the tumour microenvironment.


Asunto(s)
Apolipoproteínas E , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/sangre , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/sangre , Pronóstico , Microambiente Tumoral/inmunología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38730034

RESUMEN

Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.

15.
J Colloid Interface Sci ; 666: 210-220, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593655

RESUMEN

Engineering platinum-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is essential for electrochemical hydrogen production. In this paper, we report the synthesis of cobalt-doped AlNi3/NiO (Co-AlNi3/NiO) electrode with three-dimensional nanoporous structure via chemical dealloying method. Density functional theory (DFT) calculations reveal that Co-AlNi3/NiO can accelerate water adsorption / dissociation and optimize adsorption-desorption energies of H* intermediates, thus improving the intrinsic HER activity. Both the introduction of Co and Al can efficiently ameliorate the electronic density around Ni sites of NiO and AlNi3, which can effectively reduce the energy barrier towards Volmer-Heyrovsky reaction and thus synergistically promote the hydrogen evolution. Benefiting from the large electrochemical active surface area, high electrical conductivity and electronic effect, the nanoporous Co-AlNi3/NiO catalyst exhibits remarkable HER activity with an overpotential of 73 mV at a current density of 10 mA cm-2 in alkaline condition, outperforming most of the reported non-precious metal catalysts. The nanoporous Co-AlNi3/NiO catalyst can operate continuously over 1000 h at high current densities with a robust stability. This work provides a new vision for the development of low-cost and efficient electrocatalysts for energy conversion applications.

16.
Small ; 20(31): e2311332, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38431963

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are considered a promising device for next-generation energy storage due to their high safety and low cost. However, developing high-performance cathodes that can be matched with zinc metal anodes remains a challenge in unlocking the full potential of AZIBs. In this study, a typical transition metal layered double hydroxides (NiCo-LDHs) can be in situ reconstructed to NiCo-LDHs/Ni(Co)OOH heterostructure using an electrochemical cycling activation (ECA) method, serving as a novel cathode material for AZIBs. The optimized ECA-NiCo-LDHs cathode demonstrates a high capacity of 181.5 mAh g-1 at 1 A g-1 and retains 75% of initial capacity after 700 cycles at 5 A g-1. The abundant heterointerfaces of the NiCo-LDHs/Ni(Co)OOH material can activate additional active sites for zinc-ion storage and accelerate ion diffusion. Theoretical calculations also suggest the heterostructure can boost charge transfer and regulate ion-adsorption capability, thereby improving the electrochemical performance. Additionally, the flexible AZIBs device exhibits good service performance. This study on interface engineering introduces a new possibility for utilizing LDHs in AZIBs and offers a novel strategy for designing electrode materials.

17.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542340

RESUMEN

Auxin plays a crucial role in regulating root growth and development, and its distribution pattern under environmental stimuli significantly influences root plasticity. Under K deficiency, the interaction between K+ transporters and auxin can modulate root development. This study compared the differences in root morphology and physiological mechanisms of the low-K-tolerant maize inbred line 90-21-3 and K-sensitive maize inbred line D937 under K-deficiency (K+ = 0.2 mM) with exogenous NAA (1-naphthaleneacetic acid, NAA = 0.01 mM) treatment. Root systems of 90-21-3 exhibited higher K+ absorption efficiency. Conversely, D937 seedling roots demonstrated greater plasticity and higher K+ content. In-depth analysis through transcriptomics and metabolomics revealed that 90-21-3 and D937 seedling roots showed differential responses to exogenous NAA under K-deficiency. In 90-21-3, upregulation of the expression of K+ absorption and transport-related proteins (proton-exporting ATPase and potassium transporter) and the enrichment of antioxidant-related functional genes were observed. In D937, exogenous NAA promoted the responses of genes related to intercellular ethylene and cation transport to K-deficiency. Differential metabolite enrichment analysis primarily revealed significant enrichment in flavonoid biosynthesis, tryptophan metabolism, and hormone signaling pathways. Integrated transcriptomic and metabolomic analyses revealed that phenylpropanoid biosynthesis is a crucial pathway, with core genes (related to peroxidase enzyme) and core metabolites upregulated in 90-21-3. The findings suggest that under K-deficiency, exogenous NAA induces substantial changes in maize roots, with the phenylpropanoid biosynthesis pathway playing a crucial role in the maize root's response to exogenous NAA regulation under K-deficiency.


Asunto(s)
Deficiencia de Potasio , Plantones , Plantones/genética , Plantones/metabolismo , Zea mays/metabolismo , Deficiencia de Potasio/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Cell Div ; 19(1): 9, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532426

RESUMEN

BACKGROUND: The molecular targets and associated mechanisms of hepatocellular carcinoma (HCC) have been widely studied, but the roles of PDZK1 in HCC are unclear. Therefore, the aim of this study is to explore the role and associated mechanisms of PDZK1 in HCC. RESULTS: It was found that the expression of PDZK1 in HCC tissues was higher than that in paired paracancerous tissues. High expression of PDZK1 was associated with lymph node metastasis, degree of differentiation, and clinical stage. Upregulation of PDZK1 in HCC cells affected their proliferation, migration, invasion, apoptosis, and cell cycle, and also induced PI3K/AKT activation. PDZK1 is a downstream target gene of miR-101-3p. Accordingly, increase in the expression of miR-101-3p reversed the promotive effect of PDZK1 in HCC. Moreover, PDZK1 was found to accelerate cell proliferation and promote the malignant progression of HCC via the PI3K/AKT pathway. CONCLUSION: Our study indicated that the miR-101-3p/PDZK1 axis plays a role in HCC progression and could be beneficial as a novel biomarker and new therapeutic target for HCC treatment.

19.
Sci Rep ; 14(1): 4674, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409308

RESUMEN

This study examines a collaborative framework that utilizes an intelligent deep Q-network to regulate the formation of leader-follower Unmanned Aerial Vehicles (UAVs). The aim is to tackle the challenges posed by the highly dynamic and uncertain flight environment of UAVs. In the context of UAVs, we have developed a dynamic model that captures the collective state of the system. This model encompasses variables like as the relative positions, heading angle, rolling angle, and velocity of different nodes in the formation. In the subsequent section, we elucidate the operational procedure of UAVs in a collaborative manner, employing the conceptual framework of Markov Decision Process (MDP). Furthermore, we employ the Reinforcement Learning (RL) to facilitate this process. In light of this premise, a fundamental framework is presented for addressing the control problem of UAVs utilizing the DQN scheme. This framework encompasses a technique for action selection known as [Formula: see text]-imitation, as well as algorithmic specifics. Finally, the efficacy and portability of the DQN-based approach are substantiated by numerical simulation validation. The average reward curve demonstrates a satisfactory level of convergence, and kinematic link between the nodes inside the formation satisfies the essential requirements for the creation of a controller.

20.
Nat Commun ; 15(1): 1295, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346953

RESUMEN

Two-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges. The resulting graphene superlattice exhibits remarkable correlations between quantum phases at both the electron and phonon levels, leading to diverse functionalities, such as electromagnetic shielding, energy harvesting, optoelectronics, and thermoelectrics. Overall, our findings not only provide chemical design principles for synthesizing and understanding functional 2D superlattices but also expand their enhanced functionality and extensive application potential compared to their pristine counterparts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA