Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 232: 114207, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219948

RESUMEN

The emergence of multidrug resistance (MDR) in tumors leads to reduced chemotherapeutic efficacy, and P-glycoprotein (P-gp) overexpression is one of the main causes of MDR. In previous reports, we demonstrated that a variety of hederagenin (HD) derivatives could reverse MDR in tumors in vivo and in vitro. To further enrich the structure types, enhance the activity, and improve the structure-activity relationships (SARs), three series of HD derivatives were designed and synthesized in this study via A-ring fusion and innovative utilization of the structural advantages of nitrogen-containing heterocycles and benzyl group substitution. We evaluated the MDR reversal activity of 21 HD derivatives in KBV (multidrug-resistant oral epidermoid carcinoma) cells and refined their SARs. The results of cell experiments illustrated that more than half of the compounds had MDR reversal activity. Among them, compound 16 displayed relatively stronger MDR reversal ability, as it improved the sensitivity of KBV cells to paclitaxel, vincristine, mitoxantrone and cisplatin with IC50 values of 3.19, 0.65, 125.30, and 4.54 nM, respectively. The results of mechanistic analysis demonstrated that compound 16 inhibited the efflux function of P-gp by activating P-gp ATPase and increased the accumulation of rhodamine 123 in KBV cells. Importantly, the efficacy of paclitaxel against KBV cancer cell-derived xenograft tumors in nude mice was enhanced by compound 16 based on the growth suppression rate of 56.24%. These results indicated that introducing nitrogen-containing heterocycles could effectively improve the MDR reversal activity of HD derivatives, which appear to be promising lead compounds for tumor MDR reversal agent development.


Asunto(s)
Antineoplásicos , Nitrógeno , Animales , Antineoplásicos/química , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Ratones , Ratones Desnudos , Nitrógeno/farmacología , Ácido Oleanólico/análogos & derivados
2.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641512

RESUMEN

The improper use of antibiotics has led to the development of bacterial resistance, resulting in fewer antibiotics for many bacterial infections. Especially, the drug resistance of hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is distinctly serious. This research designed and synthesized two series of 3-substituted ocotillol derivatives in order to improve their anti-HA-MRSA potency and synergistic antibacterial activity. Among the synthesized compounds, 20-31 showed minimum inhibitory concentration (MIC) values of 1-64 µg/mL in vitro against HA-MRSA 18-19, 18-20, and S. aureus ATCC29213. Compound 21 showed the best antibacterial activity, with an MIC of 1 µg/mL and had synergistic inhibitory effects. The fractional inhibitory concentration index (FICI) value was 0.375, when combined with chloramphenicol (CHL) or kanamycin (KAN). The structure-activity relationships (SARs) of ocotillol-type derivatives were also summarized. Compound 21 has the potential to be developed as a novel antibacterial agent or potentiator against HA-MRSA.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Ginsenósidos/química , Cloranfenicol/farmacología , Diseño de Fármacos , Sinergismo Farmacológico , Kanamicina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA