Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401952, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198232

RESUMEN

Oleanolic acid is a pentacyclic triterpenoid extracted and isolated from the fruit of plants in the Ligustrum lucidum Ait. in the family Oleaceae. To discover biorational natural product-based pesticides, a series of oleanolic acid derivatives containing anhydride active skeletons were prepared by ingeniously introducing an active acyloxy group at its C-28 carboxyl position, and their structures were well characterized by 1H NMR, 13C NMR, HRMS, and m.p.. The stereochemical configuration of compound 8e was confirmed using single-crystal X-ray diffraction. Furthermore, bioactivities of these compounds as anti-oomycete and anti-fungal agents against two serious agricultural pests, Phytophthora capsici and Fusarium graminearum we assessed. Amongst evaluated compounds, 1) Compounds 8h and 8j displayed significant anti-oomycete against P. capsici, with EC50 values of 54.73 and 65.15 mg/L, respectively. 2) The target compounds have obvious selectivity, and their anti-oomycete activity is significantly better than their anti-fungal activity. 3) Interestingly, there are significant differences in the structure-activity relationship of different substituents or the same substituent at different positions anti-oomycete and anti-fungal against P. capsici and F. graminearum, respectively. The study provides an idea for further exploring the bioactivities of 28-acyloxyoleanolic acid derivatives, and develops the application of 28-acyloxyoleanolic acid derivatives containing anhydride in agriculture.

2.
Nat Prod Res ; : 1-10, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501725

RESUMEN

In order to explore novel natural product-based anti-oomycete agent, ten 2-acyloxyhinokitiol derivatives (5a-j) were designed and synthesised, and structurally confirmed by 1H NMR,13C NMR, HRMS, and melting point. The stereochemical configuration of compound 5f was unambiguously confirmed by single-crystal X-ray diffraction. Furthermore, we evaluated the target compounds 5a-j as anti-oomycete activity against a serious agricultural disease of Phytophthora capsici. Among the ten hinokitiol ester derivatives tested, four compounds 5d, 5g, 5h and 5j had anti-oomycete activity higher than the positive control zoxamide (EC50 = 23.59 mg/L), and the EC50 values of 18.90, 20.62, 13.61 and 21.29 mg/L, respectively. Especially compound 5h exhibited the best anti-oomycete activity against P. capsici with EC50 value of 13.61 mg/L. Overall, the anti-oomycete activities of 2-acyloxyhinokitiol derivatives is higher than that of 2-sulfonyloxyhinokitiol derivatives. The results laid a good foundation for the subsequent synthesis of hinokitiol ester derivatives with significant anti-oomycete activity.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37929728

RESUMEN

BACKGROUND: Developing high-efficiency and low-risk small-molecule green fungicide is the key to effective control of the plant pathogenic oomycetes. Indole is an important raw material for drug synthesis. Due to its unique structural skeleton, indole, and its derivatives have exhibited a wide range of biological activities. However, a study on the synthesis of novel indole derivatives as fungicidal agents against Phytophthora capsici has not yet been reported. METHODS: The important intermediates 2a-c and 3a-c were synthesized in high yields by Vilsmeier- Haack and Knoevenagel reactions with indole as the lead compound. Furthermore, different substituted benzenesulfonyl groups were introduced into the NH position of the indole ring, and twelve indole derivatives (I-a-l) were prepared. Their structures were well characterized by 1H NMR, HRMS, and melting point. RESULTS: The results showed that 2-[(N-(4-nitrobenzenesulfonyl)-indole-3)-methylene]-diethyl malonate (I-d) and 2-[(N-(4-nitrobenzenesulfonyl)-5-cyanoindole-3)-methylene]-diethyl malonate (I-l) showed more anti-oomycete activity against P. capsici than the commercialized fungicide zoxamide, with corresponding EC50 values of 26.53, 23.48 and 28.16 mg/L, respectively, and the protective effect of the compounds against P. capsici in vivo further confirmed the above results. CONCLUSION: The preliminary structure-activity relationship showed that the formyl group modification at the C-3 position of the indole ring was acceptable, and the different anti-oomycete activities of R1 and R2 were significantly different, with R1 being 5-CN > H > 6-Me, and R2 being 4-NO2 > 3-NO2, H > 4-Me.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA