Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Acta Biomater ; 168: 323-332, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414111

RESUMEN

Spider silk is biocompatible, biodegradable, and rivals some of the best synthetic materials in terms of strength and toughness. Despite extensive research, comprehensive experimental evidence of the formation and morphology of its internal structure is still limited and controversially discussed. Here, we report the complete mechanical decomposition of natural silk fibers from the golden silk orb-weaver Trichonephila clavipes into ≈10 nm-diameter nanofibrils, the material's apparent fundamental building blocks. Furthermore, we produced nanofibrils of virtually identical morphology by triggering an intrinsic self-assembly mechanism of the silk proteins. Independent physico-chemical fibrillation triggers were revealed, enabling fiber assembly from stored precursors "at-will". This knowledge furthers the understanding of this exceptional material's fundamentals, and ultimately, leads toward the realization of silk-based high-performance materials. STATEMENT OF SIGNIFICANCE: Spider silk is one of the strongest and toughest biomaterials, rivaling the best man-made materials. The origins of these traits are still under debate but are mostly attributed to the material's intriguing hierarchical structure. Here we fully disassembled spider silk into 10 nm-diameter nanofibrils for the first time and showed that nanofibrils of the same appearance can be produced via molecular self-assembly of spider silk proteins under certain conditions. This shows that nanofibrils are the key structural elements in silk and leads toward the production of high-performance future materials inspired by spider silk.


Asunto(s)
Seda , Arañas , Animales , Seda/química , Materiales Biocompatibles/metabolismo , Arañas/metabolismo
2.
Small ; 18(30): e2202065, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35780468

RESUMEN

Biomaterials with outstanding mechanical properties, including spider silk, wood, and cartilage, often feature an oriented nanofibrillar structure. The orientation of nanofibrils gives rise to a significant mechanical anisotropy, which is extremely challenging to characterize, especially for microscopically small or inhomogeneous samples. Here, a technique utilizing atomic force microscope indentation at multiple points combined with finite element analysis to sample the mechanical anisotropy of a thin film in a microscopically small area is reported. The system studied here is the tape-like silk of the Chilean recluse spider, which entirely consists of strictly oriented nanofibrils giving rise to a large mechanical anisotropy. The most detailed directional nanoscale structure-property characterization of spider silk to date is presented, revealing the tensile and transverse elastic moduli as 9 and 1 GPa, respectively, and the binding strength between silk nanofibrils as 159 ± 13 MPa. Furthermore, based on this binding strength, the nanofibrils' surface energy is derived as 37 mJ m-2 , and concludes that van der Waals forces play a decisive role in interfibrillar binding. Due to its versatility, this technique has many potential applications, including early disease diagnostics, as underlying pathological conditions can alter the local mechanical properties of tissues.


Asunto(s)
Seda , Arañas , Animales , Anisotropía , Materiales Biocompatibles , Módulo de Elasticidad , Seda/química , Resistencia a la Tracción
3.
Nat Commun ; 13(1): 4329, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902573

RESUMEN

Nanofibrils play a pivotal role in spider silk and are responsible for many of the impressive properties of this unique natural material. However, little is known about the internal structure of these protein fibrils. We carry out polarized Raman and polarized Fourier-transform infrared spectroscopies on native spider silk nanofibrils and determine the concentrations of six distinct protein secondary structures, including ß-sheets, and two types of helical structures, for which we also determine orientation distributions. Our advancements in peak assignments are in full agreement with the published silk vibrational spectroscopy literature. We further corroborate our findings with X-ray diffraction and magic-angle spinning nuclear magnetic resonance experiments. Based on the latter and on polypeptide Raman spectra, we assess the role of key amino acids in different secondary structures. For the recluse spider we develop a highly detailed structural model, featuring seven levels of structural hierarchy. The approaches we develop are directly applicable to other proteinaceous materials.


Asunto(s)
Seda , Arañas , Animales , Espectroscopía de Resonancia Magnética , Estructura Secundaria de Proteína , Seda/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
ACS Macro Lett ; 7(11): 1364-1370, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35651244

RESUMEN

Spider silk exhibits a combination of outstanding tensile strength and extensibility unique among all synthetic and biogenic polymer fibers. It has thus generated great interest to understand protein-based high-toughness materials and inspired the design of similar synthetic materials. The unrivaled properties of silk fibers have been recognized to be intimately related to their hierarchical structure. However, in the absence of unambiguous experimental evidence, competing and incompatible structural models of natural silk fibers have been proposed, some of them including various types of fibrillar components. Here we show that the fibers of the recluse (Loxosceles) spider exhibit the typical tensile properties of a very good spider silk and are entirely composed of 20 nm diameter protein fibrils that are more than 1 µm long. Based on these findings, we developed the most detailed structural model for any silk directly supported by experimental evidence. Our work suggests that all the key properties of a spider silk are implemented within a single nanofibril, and we have isolated and imaged such a nanofibril from a native spider silk fiber. The nanofibril breaking force was estimated to be ≈120 nN. Our work underlines the importance of nanofibrils and furthers the understanding of the structure-property relationships of silk, with wide-ranging implications for silk research and the design of silk-inspired high-performance materials.

5.
Phys Rev Lett ; 115(26): 260403, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26764976

RESUMEN

A quantum system can behave as a wave or as a particle, depending on the experimental arrangement. When, for example, measuring a photon using a Mach-Zehnder interferometer, the photon acts as a wave if the second beam splitter is inserted, but as a particle if this beam splitter is omitted. The decision of whether or not to insert this beam splitter can be made after the photon has entered the interferometer, as in Wheeler's famous delayed-choice thought experiment. In recent quantum versions of this experiment, this decision is controlled by a quantum ancilla, while the beam splitter is itself still a classical object. Here, we propose and realize a variant of the quantum delayed-choice experiment. We configure a superconducting quantum circuit as a Ramsey interferometer, where the element that acts as the first beam splitter can be put in a quantum superposition of its active and inactive states, as verified by the negative values of its Wigner function. We show that this enables the wave and particle aspects of the system to be observed with a single setup, without involving an ancilla that is not itself a part of the interferometer. We also study the transition of this quantum beam splitter from a quantum to a classical object due to decoherence, as observed by monitoring the interferometer output.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA