Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6779, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185306

RESUMEN

Citrullus ecirrhosus, Citrullus rehmii, and Citrullus naudinianus are three important related wild species of watermelon in the genus Citrullus, and their morphological differences are clear, however, their chloroplast genome differences remain unknown. This study is the first to assemble, analyze, and publish the complete chloroplast genomes of C. ecirrhosus, C. rehmii, and C. naudinianus. A comparative analysis was then conducted among the complete chloroplast genomes of seven extant Citrullus species, and the results demonstrated that the average genome sizes of Citrullus is 157,005 bp, a total of 130-133 annotated genes were identified, including 8 rRNA, 37 tRNA and 85-88 protein-encoding genes. Their gene content, order, and genome structure were similar. However, noncoding regions were more divergent than coding regions, and rps16-trnQ was a hypervariable fragment. Thirty-four polymorphic SSRs, 1,271 SNPs and 234 INDELs were identified. Phylogenetic trees revealed a clear phylogenetic relationship of Citrullus species, and the developed molecular markers (SNPs and rps16-trnQ) could be used for taxonomy in Citrullus. Three genes (atpB, clpP1, and rpoC2) were identified to undergo selection and would promote the environmental adaptation of Citrullus.


Asunto(s)
Citrullus , Genoma del Cloroplasto , Citrullus/genética , Filogenia , Cloroplastos/genética , Variación Genética
2.
BMC Plant Biol ; 21(1): 492, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696718

RESUMEN

BACKGROUND: Cucumber (Cucumis sativus L.) is one of the most important economic crops and is susceptible to various abiotic stresses. The valine-glutamine (VQ) motif-containing proteins are plant-specific proteins with a conserved "FxxhVQxhTG" amino acid sequence that regulates plant growth and development. However, little is known about the function of VQ proteins in cucumber. RESULTS: In this study, a total of 32 CsVQ proteins from cucumber were confirmed and characterized using comprehensive genome-wide analysis, and they all contain a conserved motif with 10 variations. Phylogenetic tree analysis revealed that these CsVQ proteins were classified into nine groups by comparing the CsVQ proteins with those of Arabidopsis thaliana, melon and rice. CsVQ genes were distributed on seven chromosomes. Most of these genes were predicted to be localized in the nucleus. In addition, cis-elements in response to different stresses and hormones were observed in the promoters of the CsVQ genes. A network of CsVQ proteins interacting with WRKY transcription factors (CsWRKYs) was proposed. Moreover, the transcripts of CsVQ gene were spatio-temporal specific and were induced by abiotic adversities. CsVQ4, CsVQ6, CsVQ16-2, CsVQ19, CsVQ24, CsVQ30, CsVQ32, CsVQ33, and CsVQ34 were expressed in the range of organs and tissues at higher levels and could respond to multiple hormones and different stresses, indicating that these genes were involved in the response to stimuli. CONCLUSIONS: Together, our results reveal novel VQ resistance gene resources, and provide critical information on CsVQ genes and their encoded proteins, which supplies important genetic basis for VQ resistance breeding of cucumber plants.


Asunto(s)
Cucumis sativus/genética , Cucumis sativus/metabolismo , Glutamina/genética , Glutamina/metabolismo , Estrés Fisiológico/genética , Valina/genética , Valina/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Filogenia
3.
Ecol Evol ; 11(15): 9970-9986, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367553

RESUMEN

Yam is an important edible tuber and root plant worldwide; China as one of the native places of yams has many diverse local resources. The goal of this study was to clarify the genetic diversity of the commonly cultivated yam landraces and the genetic relationship between the main yam species in China. In this study, 26 phenotypic traits of 112 yam accessions from 21 provinces in China were evaluated, and 24 simple sequence repeat (SSR) and 29 sequence-related amplified polymorphism (SRAP) markers were used for the genetic diversity analysis. Phenotypic traits revealed that Dioscorea opposita had the highest genetic diversity, followed by D. alata, D. persimilis, D. fordii, and D. esculenta. Among the 26 phenotypic traits, the Shannon diversity indexes of leaf shape, petiole color, and stem color were high, and the range in the variation of tuber-related traits in the underground part was higher than that in the aboveground part. All accessions were divided into six groups by phenotypic trait clustering, which was also supported by principal component analysis (PCA). Molecular marker analysis showed that SSR and SRAP markers had good amplification effects and could effectively and accurately evaluate the genetic variation of yam. The unweighted pair-group method with arithmetic means analysis based on SSR-SRAP marker data showed that the 112 accessions were also divided into six groups, similar to the phenotypic trait results. The results of PCA and population structure analysis based on SSR-SRAP data also produced similar results. In addition, the analysis of the origin and genetic relationship of yam indicated that the species D. opposita may have originated from China. These results demonstrate the genetic diversity and distinctness among the widely cultivated species of Chinese yam and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of Chinese yam resources.

4.
Mitochondrial DNA B Resour ; 5(1): 451-452, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33366597

RESUMEN

Dioscorea persimilis belongs to Dioscorea genus, which is considered as one of the most popular food and traditional folk medicine in China. The complete chloroplast genome of D. persimilis was determined in this study. The total genome size was 153,219 bp in length, containing a pair of inverted repeats (IRs) of 25,477 bp, which were separated by large single copy (LSC) and small single copy (SSC) of 83,448 bp and 18,817 bp, respectively. The GC content is 37.01%. A total of 129 genes were predicted including 84 protein-coding genes, eight rRNA genes and 37 tRNA genes. Phylogenetic tree analysis of 24 species in the genus Dioscorea indicated that D. persimilis was closer to Chinese yam, but has remote phylogenetic relationship with Guinea yam.

5.
PLoS One ; 14(8): e0221578, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31442274

RESUMEN

Rapeseed oil (canola, Brassica napus L.) is an important healthy vegetable oil throughout the world, the nutritional and economical value of which largely depends on its seed fatty acid composition. In this study, based on 201,187 SNP markers developed from the SLAF-seq (specific locus amplified fragment sequencing), a genome wide association study of four important fatty acid content traits (erucic acid, oleic acid, linoleic acid and linolenic acid) in a panel of 300 inbred lines of rapeseed in two environments (JXAU and JXRIS) was carried out. A total of 148 SNP loci significantly associated with these traits were detected by MLM model analysis respectively, and 30 SNP loci on A08 and C03 chromosomes were detected in three traits of erucic acid, oleic acid and linoleic acid contents simultaneously. Furthermore, 108 highly favorable alleles for increasing oleic acid and linoleic acid content, also for decreasing erucic acid content simultaneously were observed. By a basic local alignment search tool (BLAST) search with in a distance of 100 Kb around these significantly SNP-trait associations, we identified 20 orthologs of the functional candidate genes related to fatty acid biosynthesis, including the known vital fatty acid biosynthesis genes of BnaA.FAE1 and BnaC. FAE1 on the A08 and C03 chromosomes, and other potential candidate genes involving in the fatty acid biosynthesis pathway, such as the orthologs genes of FAD2, LACS09, KCS17, CER4, TT16 and ACBP5. This study lays a basis for uncovering the genetic variations and the improvement of fatty acid composition in B. napus.


Asunto(s)
Brassica napus/genética , Ácidos Grasos/metabolismo , Genes de Plantas , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Ecotipo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Carácter Cuantitativo Heredable
6.
Mitochondrial DNA B Resour ; 4(2): 2221-2222, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-33365483

RESUMEN

Siraitia grosvenorii is a famous Chinese plant used in traditional food and medicine with pharmacological effects. The complete chloroplast genome sequence of S. grosvenorii has been determined in this study. The total genome size is 158,834 bp in length and contains a pair of inverted repeats (IRs) of 26,288 bp, which were separated by large single-copy (LSC) and small single-copy (SSC) of 87,702 bp and 18,556 bp length, respectively. A total of 131 genes were predicted including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that S. grosvenorii belongs to the family Cucurbitaceae. The complete chloroplast genome of S. grosvenorii would play a significant role in the development of molecular markers in plant phylogenetic and population genetic studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA