Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(4): 5959-5972, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35049269

RESUMEN

Gamma radiolysis behaviors and mechanisms of silica-filled o-cresol formaldehyde epoxy are studied at 2.20 × 10-5 to 1.95 × 10-1 Gy/s. The radiolysis-induced changes in chemical structures do not severely affect its thermostability. The slightly deteriorated mechanical strength at temperature exceeding 100 °C is accompanied by the declining glass transition temperature (from 185.9 to 172.2 °C) and enhanced damping ability. The gas yields of hydrogen, methane, and carbon dioxide manifest a remarkable dose rate effect. Based on the Schwarzschild law, their yields at an extremely low dose rate are accurately predicted by the established master curves. Besides, the latent radiolysis of gas products and postradiation effect are found with caution. The radiation-caused residual spin species are proved to be composed of silica defects and a phenoxy-type free radical with a tert-butyl group, according to the experimental results, theoretical calculations, and spectra simulations. The lower vertical ionization potential (7.6 eV) and adiabatic ionization potential (7.1 eV) are primarily due to the ionization of the benzene ring moiety with the tert-butyl group, which is likely to suffer from radiolysis. The calculated bond dissociation energy (260.8-563.5 kJ/mol) of the typical chemical bonds of epoxy is consistent with its radiolytic vulnerability and degradation mechanisms.

2.
ACS Appl Mater Interfaces ; 13(34): 41287-41302, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410100

RESUMEN

The γ radiolysis behavior of polydimethylsiloxane (PDMS) in the radiation-thermal environments (dose rate, 0.2 Gy/s) is studied to pinpoint the basic knowledge of the temperature (20-70 °C) effects. The non-monotonous temperature effects on the formation of gas products, paramagnetic species in silica, and cross-linking density are proposed to correlate with the complex chemical reaction mechanisms. Besides, molecular dynamics simulation and theoretical calculation are first performed simultaneously based on the radical chemistry and intricate material composition, making it easier to comprehend and further harness the radiolysis mechanisms and structure deterioration of PDMS. The γ radiation-induced primary gas products and dominant cross-linking phenomena are reproduced by the molecular dynamics simulations with a reactive force field, and the reaction mechanisms and physicochemical interactions among PDMS chains, gas products, reactive radicals, and silica fillers are thoroughly studied at the atomic scale. The thermochemistry of the barrierless radical coupling reactions and reactions with explicit high-barrier transition states is calculated at the M06-2X theoretical level with the 6-311g(d, p) basis set. The barrierless reactions are all exothermal with the heat release of 321-618 kJ/mol, while the potential barriers for reactions with explicit transition states vary between 37 and 229 kJ/mol. The results show that γ radiation-induced radicals are crucial for the ensuing gas formation and cross-linking reactions, especially for the radical coupling reactions. The radical chemistry involved in the radiolytic PDMS is the key to understand and simulate its radiolysis behavior, according to the experimental and simulated results.

3.
Polymers (Basel) ; 11(9)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480768

RESUMEN

An alternating fluorinated copolymer based on chlorotrifluoroethylene (CTFE) and butyl vinyl ether (BVE) was synthesized by RAFT/MADIX living/controlled polymerization in the presence of S-benzyl O-ethyl dithiocarbonate (BEDTC). Then, using the obtained poly(CTFE-alt-BVE) as a macro chain transfer agent (macro-CTA), a block copolymer was prepared by chain extension polymerization of vinyl acetate (VAc). After a basic methanolysis process, the poly(vinyl acetate) (PVAc) block was transferred into poly(vinyl alcohol) (PVA). Finally, a novel fluorinated polyurethane with good surface properties due to the mobility of the flexible fluorinated polymer chains linked to the network was obtained via reaction of the copolymer bearing the blocks of PVA with isophorone diisocyanate (IPDI) as a cross-linking agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA