Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes Care ; 47(11): 1908-1915, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39277806

RESUMEN

OBJECTIVE: Metal and metalloid exposures (hereafter "metals") are associated with adverse health outcomes, including type 2 diabetes; however, previous studies were largely cross-sectional or underpowered. Furthermore, underserved racial and ethnic groups are underrepresented in environmental health research despite having higher rates of type 2 diabetes and a greater risk of metal exposures. Consequently, we evaluated continuous glycemic traits in relation to baseline urinary toxic metal, essential metal, and metal mixtures in a cohort of Mexican American adults. RESEARCH DESIGN AND METHODS: A total of 510 participants were selected based upon self-reported diabetes status and followed over 3 years. Urinary metals were assessed at baseline. Linear mixed-effects models were used to estimate per-month changes in hemoglobin A1c, fasting plasma glucose, and postload glucose in relation to urinary metal levels. Multiple statistical approaches were used to assess the associations between glycemic traits and metal mixtures. RESULTS: After adjustment, higher urinary levels of arsenic, selenium, copper, molybdenum, nickel, and tin were associated with faster increases in measures of glycemia. The toxic metal mixture composed of arsenic, lead, cadmium, nickel, and tin was associated with faster increases in postload glucose. Using postload glucose criteria, highest versus lowest arsenic was predicted to accelerate conversion of normoglycemia to prediabetes and diabetes by 23 and 65 months, respectively. CONCLUSIONS: In this underrepresented, high-risk Mexican American population, exposure to toxic metals and alterations in essential metal homeostasis were associated with faster increases in glycemia over time that may accelerate type 2 diabetes development.


Asunto(s)
Glucemia , Americanos Mexicanos , Humanos , Americanos Mexicanos/estadística & datos numéricos , Femenino , Masculino , Texas/epidemiología , Persona de Mediana Edad , Adulto , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/orina , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/epidemiología , Metales/orina , Arsénico/orina , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Estudios Longitudinales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38969926

RESUMEN

BACKGROUND: Arsenic, cadmium, and lead are toxic elements that widely contaminate our environment. These toxicants are associated with acute and chronic health problems, and evidence suggests that minority communities, including Hispanic/Latino Americans, are disproportionately exposed. Few studies have assessed culturally specific predictors of exposure to understand the potential drivers of racial/ethnic exposure disparities. OBJECTIVE: We sought to evaluate acculturation measures as predictors of metal/metalloid (hereafter "metal") concentrations among Mexican American adults to illuminate potential exposure sources that may be targeted for interventions. METHODS: As part of a longitudinal cohort, 510 adults, aged 35 to 69 years, underwent baseline interview, physical examination, and urine sample collection. Self-reported acculturation was assessed across various domains using the Short Acculturation Scale for Hispanics (SASH). Multivariable linear regression was used to assess associations between acculturation and urinary concentrations of arsenic, cadmium, and lead. Ordinal logistic regression was utilized to assess associations between acculturation and a metal mixture score. Lastly, best subset selection was used to build a prediction model for each toxic metal with a combination of the acculturation predictors. RESULTS: After adjustment, immigration factors were positively associated with arsenic and lead concentrations. For lead alone, English language and American media and food preferences were associated with lower levels. Immigration and parental heritage from Mexico were positively associated with the metal mixture, while preferences for English language, media, and food were negatively associated. CONCLUSION: Acculturation-related predictors of exposure provide information about potential sources of toxic metals, including international travel, foods, and consumer products. The findings in this research study provide information to empower future efforts to identify and address specific acculturation-associated toxicant exposures in order to promote health equity through clinical guidance, patient education, and public policy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA