Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Nat Immunol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227514

RESUMEN

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.

2.
Sci Rep ; 14(1): 20725, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237699

RESUMEN

Peripheral nerve injury (PNI) occurs due to damage of peripheral nerves, with healthcare professionals playing significant roles in PNI rehabilitation. This study aimed to explore the knowledge, attitudes, and practices (KAP) towards PNI rehabilitation among healthcare professionals. This cross-sectional study was conducted on June 2023 in China and healthcare professionals were enrolled. A total of 611 valid questionnaires were collected, with 62.52% female respondents. Mean scores for KAP were 14.26 ± 2.044 (possible range: 0-19), 29.77 ± 3.622 (possible range: 7-35), and 41.55 ± 9.523 (possible range: 11-55), respectively. Multivariate logistic regression revealed positive associations of professional titles (OR = 1.743, 95% CI: 1.083-2.804), occupation (OR = 1.833, 95% CI: 1.151-2.919), and involvement in treatment or care of PNI patients (OR = 1.462, 95% CI: 1.024-2.088) with knowledge. Knowledge (OR = 1.155, 95% CI: 1.042-1.280), gender (OR = 2.140, 95% CI: 1.255-3.646), education (OR = 2.258, 95% CI: 1.131-4.507), and involvement in treatment or care of PNI patients (OR = 2.463, 95% CI: 1.460-4.155) were positively associated with attitude. Attitude (OR = 1.214, 95% CI: 1.148-1.283), bachelor's degree education (OR = 0.548, 95% CI: 0.326-0.919), master's degree or higher (OR = 0.545, 95% CI: 0.308-0.964), having rehabilitation training for PNI (OR = 2.485, 95% CI: 1.633-3.781), and involvement in treatment or care of PNI patients (OR = 2.093, 95% CI: 1.395-3.138) were independently associated with practice. Healthcare professionals exhibited moderate knowledge, positive attitudes, and moderate practices towards the PNI rehabilitation. Those involved in the treatment or care of PNI have significantly higher KAP. Targeted interventions were needed to enhance understanding and promote proactive engagement in clinical practice.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Personal de Salud , Traumatismos de los Nervios Periféricos , Humanos , Femenino , Masculino , Adulto , Personal de Salud/psicología , Estudios Transversales , Encuestas y Cuestionarios , Persona de Mediana Edad , Traumatismos de los Nervios Periféricos/rehabilitación , Traumatismos de los Nervios Periféricos/psicología , China , Actitud del Personal de Salud , Adulto Joven
3.
Stem Cells Transl Med ; 13(8): 776-790, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38864709

RESUMEN

Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to ß-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteína Forkhead Box O3 , Glucagón , Células Madre Mesenquimatosas , Mitocondrias , Transducción de Señal , Sirtuina 1 , Sirtuina 1/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Proteína Forkhead Box O3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Mitocondrias/metabolismo , Ratones , Humanos , Glucagón/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Células Secretoras de Glucagón/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Ratones Endogámicos C57BL
4.
Sci Rep ; 14(1): 13882, 2024 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880800

RESUMEN

The triglyceride glucose-body mass index (TyG-BMI) is a convenient and clinically significant indicator of insulin resistance. This study aims to investigate the correlation between TyG-BMI and the onset of new-onset diabetes and determine an optimal reflection point for TyG-BMI. An analysis was conducted on 1917 participants from the risk evaluation of cancers in Chinese diabetic individuals: a lONgitudinal (REACTION) study. Participants were categorized based on their TyG-BMI, and the relationship between TyG-BMI and the incidence of new-onset diabetes was explored through logistic regression models, smoothed curve fitting with restricted cubic spline, and a two-piecewise logistic regression model. The mean age of the participants was 57.60 ± 8.89 years, with 66.5% being females. The mean TyG-BMI was 223.3 ± 32.8. Ultimately, 137 individuals (7.1%) progressed to diabetes after three years. After adjusting for covariates, TyG-BMI exhibited a positive correlation with new-onset diabetes (odd ratios (OR) for each standard deviation increase = 1.330, 95% CI 1.110-1.595). The relationship between TyG-BMI and new-onset diabetes was non-linear, with a inflcetion point at 202.9. This study reveals a positive non-linear relationship between TyG-BMI and the risk of new-onset diabetes in Chinese middle-aged and elderly individuals. When TyG-BMI exceeds 202.9, there is a significantly heightened risk of new-onset diabetes. These findings offer valuable insights for preventing new-onset diabetes.


Asunto(s)
Glucemia , Índice de Masa Corporal , Triglicéridos , Humanos , Femenino , Persona de Mediana Edad , Masculino , Triglicéridos/sangre , Glucemia/análisis , Glucemia/metabolismo , Anciano , Estudios Longitudinales , Factores de Riesgo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , China/epidemiología , Incidencia , Resistencia a la Insulina , Diabetes Mellitus/sangre , Diabetes Mellitus/epidemiología
5.
J Nanobiotechnology ; 22(1): 373, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926800

RESUMEN

BACKGROUND: The use of stem cell-derived exosomes (Exos) as therapeutic vehicles is receiving increasing attention. Exosome administration has several advantages over cell transplantation, thus making exosomes promising candidates for large-scale clinical implementation and commercialization. However, exosome extraction and purification efficiencies are relatively low, and therapeutic heterogeneity is high due to differences in culture conditions and cell viability. Therefore, in this study, we investigated a priming procedure to enhance the production and therapeutic effects of exosomes from human umbilical cord mesenchymal stem cells (hucMSCs). After preconditioning hucMSCs with agonists/inhibitors that target the Wnt/ß-catenin pathway, we assessed both the production of exosomes and the therapeutic efficacy of the optimized exosomes in the context of diabetic wound healing, hoping to provide a safer, more stable and more effective option for clinical application. RESULTS: The Wnt signalling pathway agonist CHIR99021 increased exosome production by 1.5-fold without causing obvious changes in the characteristics of the hucMSCs or the size of the exosome particles. Further studies showed that CHIR99021 promoted the production of exosomes by facilitating exocytosis. This process was partly mediated by SNAP25. To further explore whether CHIR99021 changed the cargo that was loaded into the exosomes and its therapeutic effects, we performed proteomic and transcriptomic analyses of exosomes from primed and control hucMSCs. The results showed that CHIR99021 significantly upregulated the expression of proteins that are associated with cell migration and wound healing. Animal experiments confirmed that, compared to control hucMSC-derived exosomes, CHIR99021-pretreated hucMSC-derived exosomes (CHIR-Exos) significantly accelerated wound healing in diabetic mice, enhanced local collagen deposition, promoted angiogenesis, and reduced chronic inflammation. Subsequent in vitro experiments confirmed that the CHIR-Exos promoted wound healing by facilitating cell migration, inhibiting oxidative stress-induced apoptosis, and preventing cell cycle arrest. CONCLUSIONS: The Wnt agonist CHIR99021 significantly increased exosome secretion by hucMSCs, which was partly mediated by SNAP25. Notably, CHIR99021 treatment also significantly increased the exosomal levels of proteins that are associated with wound healing and cell migration, resulting in enhanced acceleration of wound healing. All of these results suggested that pretreatment of hucMSCs with CHIR99021 not only promoted exosome production but also improved the exosome therapeutic efficacy, thus providing a promising option for large-scale clinical implementation and commercialization.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Cordón Umbilical , Vía de Señalización Wnt , Cicatrización de Heridas , Exosomas/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Animales , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Cordón Umbilical/citología , Piridinas/farmacología , Diabetes Mellitus Experimental/metabolismo , Pirimidinas/farmacología , Masculino , Células Cultivadas , Movimiento Celular/efectos de los fármacos
6.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986823

RESUMEN

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

7.
Vaccines (Basel) ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37766115

RESUMEN

New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.

8.
Sci Transl Med ; 15(715): eadg5567, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756379

RESUMEN

The repeated emergence of zoonotic human betacoronaviruses (ß-CoVs) dictates the need for broad therapeutics and conserved epitope targets for countermeasure design. Middle East respiratory syndrome (MERS)-related coronaviruses (CoVs) remain a pressing concern for global health preparedness. Using metagenomic sequence data and CoV reverse genetics, we recovered a full-length wild-type MERS-like BtCoV/li/GD/2014-422 (BtCoV-422) recombinant virus, as well as two reporter viruses, and evaluated their human emergence potential and susceptibility to currently available countermeasures. Similar to MERS-CoV, BtCoV-422 efficiently used human and other mammalian dipeptidyl peptidase protein 4 (DPP4) proteins as entry receptors and an alternative DPP4-independent infection route in the presence of exogenous proteases. BtCoV-422 also replicated efficiently in primary human airway, lung endothelial, and fibroblast cells, although less efficiently than MERS-CoV. However, BtCoV-422 shows minor signs of infection in 288/330 human DPP4 transgenic mice. Several broad CoV antivirals, including nucleoside analogs and 3C-like/Mpro protease inhibitors, demonstrated potent inhibition against BtCoV-422 in vitro. Serum from mice that received a MERS-CoV mRNA vaccine showed reduced neutralizing activity against BtCoV-422. Although most MERS-CoV-neutralizing monoclonal antibodies (mAbs) had limited activity, one anti-MERS receptor binding domain mAb, JC57-11, neutralized BtCoV-422 potently. A cryo-electron microscopy structure of JC57-11 in complex with BtCoV-422 spike protein revealed the mechanism of cross-neutralization involving occlusion of the DPP4 binding site, highlighting its potential as a broadly neutralizing mAb for group 2c CoVs that use DPP4 as a receptor. These studies provide critical insights into MERS-like CoVs and provide candidates for countermeasure development.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Animales , Ratones , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Microscopía por Crioelectrón , Anticuerpos Monoclonales/metabolismo
9.
NPJ Vaccines ; 8(1): 111, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553406

RESUMEN

While several COVID-19 vaccines have been in use, more effective and durable vaccines are needed to combat the ongoing COVID-19 pandemic. Here, we report highly immunogenic self-assembling SARS-CoV-2 spike-HBsAg nanoparticles displaying a six-proline-stabilized WA1 (wild type, WT) spike S6P on a HBsAg core. These S6P-HBsAgs bound diverse domain-specific SARS-CoV-2 monoclonal antibodies. In mice with and without a HBV pre-vaccination, DNA immunization with S6P-HBsAgs elicited significantly more potent and durable neutralizing antibody (nAb) responses against diverse SARS-CoV-2 strains than that of soluble S2P or S6P, or full-length S2P with its coding sequence matching mRNA-1273. The nAb responses elicited by S6P-HBsAgs persisted substantially longer than by soluble S2P or S6P and appeared to be enhanced by HBsAg pre-exposure. These data show that genetic delivery of SARS-CoV-2 S6P-HBsAg nanoparticles can elicit greater and more durable nAb responses than non-nanoparticle forms of stabilized spike. Our findings highlight the potential of S6P-HBsAgs as next generation genetic vaccine candidates against SARS-CoV-2.

10.
J Virol ; 97(7): e0159622, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37395646

RESUMEN

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Epítopos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Epítopos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Dominios Proteicos , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Modelos Moleculares , Línea Celular
13.
Sci Adv ; 9(20): eadg6076, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37196074

RESUMEN

Enterovirus D68 (EV-D68) causes severe respiratory illness in children and can result in a debilitating paralytic disease known as acute flaccid myelitis. No treatment or vaccine for EV-D68 infection is available. Here, we demonstrate that virus-like particle (VLP) vaccines elicit a protective neutralizing antibody against homologous and heterologous EV-D68 subclades. VLP based on a B1 subclade 2014 outbreak strain elicited comparable B1 EV-D68 neutralizing activity as an inactivated viral particle vaccine in mice. Both immunogens elicited weaker cross-neutralization against heterologous viruses. A B3 VLP vaccine elicited more robust neutralization of B3 subclade viruses with improved cross-neutralization. A balanced CD4+ T helper response was achieved using a carbomer-based adjuvant, Adjuplex. Nonhuman primates immunized with this B3 VLP Adjuplex formulation generated robust neutralizing antibodies against homologous and heterologous subclade viruses. Our results suggest that both vaccine strain and adjuvant selection are critical elements for improving the breadth of protective immunity against EV-D68.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Vacunas de Partículas Similares a Virus , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes
14.
J Cachexia Sarcopenia Muscle ; 14(2): 915-929, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708027

RESUMEN

BACKGROUND: Diabetes and obesity are associated with muscle atrophy that reduces life quality and lacks effective treatment. Mesenchymal stromal cell (MSC)-based therapy can ameliorate high fat-diet (HFD) and immobilization (IM)-induced muscle atrophy in mice. However, the effect of MSCs on muscle atrophy in type 2 diabetes mellitus (T2DM) and the potential mechanism is unclear. Here, we evaluated the efficacy and explored molecular mechanisms of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (MSC-EXO) on diabetes- and obesity-induced muscle atrophy. METHODS: Diabetic db/db mice, mice fed with high-fat diet (HFD), mice with hindlimb immobilization (IM), and C2C12 myotubes were used to explore the effect of hucMSCs or MSC-EXO in alleviating muscle atrophy. Grip strength test and treadmill running were used to measure skeletal muscle strength and performance. Body composition, muscle weight, and muscle fibre cross-sectional area (CSA) was used to evaluate muscle mass. RNA-seq analysis of tibialis anterior (TA) muscle and Western blot analysis of muscle atrophy signalling, including MuRF1 and Atrogin 1, were performed to investigate the underlying mechanisms. RESULTS: hucMSCs increased grip strength (P = 0.0256 in db/db mice, P = 0.012 in HFD mice, P = 0.0097 in IM mice), running endurance (P = 0.0154 in HFD mice, P = 0.0006 in IM mice), and muscle mass (P = 0.0004 in db/db mice, P = 0.0076 in HFD mice, P = 0.0144 in IM mice) in all models tested, with elevated CSA of muscle fibres (P < 0.0001 in db/db mice and HFD mice, P = 0.0088 in IM mice) and reduced Atrogin1 (P = 0.0459 in db/db mice, P = 0.0088 in HFD mice, P = 0.0016 in IM mice) and MuRF1 expression (P = 0.0004 in db/db mice, P = 0.0077 in HFD mice, P = 0.0451 in IM mice). MSC-EXO replicated all these hucMSC-mediated changes (P = 0.0103 for grip strength, P = 0.013 for muscle mass, P < 0.0001 for CSA of muscle fibres, P = 0.0171 for Atrogin1 expression, and P = 0.006 for MuRF1 expression). RNA-seq revealed that hucMSCs activated the AMPK/ULK1 signalling and enhanced autophagy. Knockdown of AMPK or inhibition of autophagy with 3-methyladenine (3-MA) diminished the beneficial anti-atrophy effects of hucMSCs or MSC-EXO. CONCLUSIONS: Our results suggest that human umbilical cord mesenchymal stromal cells mitigate diabetes- and obesity-induced muscle atrophy via enhancing AMPK/ULK1-mediated autophagy through exosomes, with implications of applying hucMSCs or hucMSC-derived exosomes to treat muscle atrophy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Células Madre Mesenquimatosas , Atrofia Muscular , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Exosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Obesidad
15.
Cell Host Microbe ; 31(1): 97-111.e12, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36347257

RESUMEN

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos Monoclonales , Brotes de Enfermedades , Mesocricetus , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
16.
Dev Comp Immunol ; 138: 104529, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087785

RESUMEN

Histone H1 acts as an essential chromatin component and participates in the formation of higher chromatin structures together with core histones. In addition, H1 also has important functions in physiological processes such as gene expression regulation, DNA repair, and the immune response. In this study, the histone homologous protein Pm-H1.2-like was identified from the transcriptome database of Pagrus major we studied previously. Conservatism of evolution was investigated by sequence alignment and phylogenetic analysis. Transcripts of Pm-H1.2-like were detected in P. major tissues. The highest expression level was found in gill and skin tissues. Consistent with the data from the transcriptome database, we observed that the expression of Pm-H1.2-like was rapidly induced in nonspecific cytotoxic cells (NCCs) infected with inactivated Vibrio anguillarum. Gene silencing of Pm-H1.2-like by RNAi significantly suppressed the expression of NK-lysin and GZMB in NCCs at 12 h after pathogen stimulation, but had no significant effect on IFN-γ expression. Next, we obtained the fusion proteins rPm-H1.2-like and rPm-H1.2-like (36-80) through prokaryotic expression. ELISA showed that rPm-H1.2-like bound to oligonucleotide (ODN) in a concentration-dependent manner, while no binding activity of rPm-H1.2-like (36-80) with ODN was observed. This study confirmed that Pm-H1.2-like actively participates in the immune response of NCCs to bacterial infection, deepening the understanding of the immune features of histone H1 in fish.


Asunto(s)
Histonas , Dorada , Animales , Cromatina , Histonas/metabolismo , Oligonucleótidos , Filogenia
17.
Vaccines (Basel) ; 12(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38250850

RESUMEN

The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 µg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of ß-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.

18.
Sci Transl Med ; 14(675): eabq6364, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516269

RESUMEN

Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Pan troglodytes , Primates , Adenoviridae , Enfermedad del Virus de Marburg/prevención & control
19.
Nat Commun ; 13(1): 7733, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517467

RESUMEN

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.


Asunto(s)
COVID-19 , Región Variable de Inmunoglobulina , Humanos , Epítopos/genética , SARS-CoV-2/genética , Células Clonales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA