Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 12(29): 3976-84, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27335137

RESUMEN

The atomic thickness and flatness allow properties of 2D semiconductors to be modulated with influence from the substrate. Reversible modulation of these properties requires an "active," reconfigurable substrate, i.e., a substrate with switchable functionalities that interacts strongly with the 2D overlayer. In this work, the photoluminescence (PL) of monolayer molybdenum disulfide (MoS2 ) is modulated by interfacing it with a phase transition material, vanadium dioxide (VO2 ). The MoS2 PL intensity is enhanced by a factor of up to three when the underlying VO2 undergoes the thermally driven phase transition from the insulating to metallic phase. A nonvolatile, reversible way to rewrite the PL pattern is also demonstrated. The enhancement effect is attributed to constructive optical interference when the VO2 turns metallic. This modulation method requires no chemical or mechanical processes, potentially finding applications in new switches and sensors.

2.
Nano Lett ; 14(5): 2394-400, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735496

RESUMEN

The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.

3.
Nano Lett ; 12(12): 6272-7, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23163634

RESUMEN

Two-dimensional electron systems offer enormous opportunities for science discoveries and technological innovations. Here we report a dense electron system on the surface of single-crystal vanadium dioxide nanobeam via electrolyte gating. The overall conductance of the nanobeam increases by nearly 100 times at a gate voltage of 3 V. A series of experiments were carried out which rule out electrochemical reaction, impurity doping, and oxygen vacancy diffusion as the dominant mechanism for the conductance modulation. A surface insulator-to-metal transition is electrostatically triggered, thereby collapsing the bandgap and unleashing an extremely high density of free electrons from the original valence band within a depth self-limited by the energetics of the system. The dense surface electron system can be reversibly tuned by the gating electric field, which provides direct evidence of the electron correlation driving mechanism of the phase transition in VO(2). It also offers a new material platform for implementing Mott transistor and novel sensors and investigating low-dimensional correlated electron behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA