RESUMEN
We attempted to identify significant pathway cross-talk in rheumatoid arthritis (RA) by the Monte Carlo cross-validation (MCCV) method. We therefore obtained and preprocessed the gene expression profile of RA. MCCV involves identifying differentially expressed genes (DEGs), identifying differential pathways (DPs), calculating the discriminating score (DS) of the pathway cross-talk, and random forest (RF) classification. We carried out 50 bootstrap iterations of MCCV to identify the key instances of pathway cross-talk involved in RA. We identified a total of 17 significant DEGs and 15 significant DPs by comparing RA samples and normal controls. We found the most significant difference between RA and the normal controls in the eIF4 and p70S6K signaling regulation pathway. Furthermore, we identified 10 instances of pathway cross-talk with the best classification performance for RA and normal controls, using the RF classification model. All of the top 10 pathway pairs involved cross-talk with eIF4 and p70S6K signaling regulation, and the other 10 pathways were immune-related. By MCCV, we identified one critical DP and 10 significant instances of pathway cross-talk in RA. We propose that the eIF4 and p70S6K signaling regulation pathway and the other significant instances of pathway cross-talk play key roles in the occurrence and development of RA, and are potential predictive and prognostic markers for RA.
Asunto(s)
Artritis Reumatoide/genética , Perfilación de la Expresión Génica/métodos , Artritis Reumatoide/metabolismo , Humanos , Modelos Genéticos , Método de Montecarlo , Transducción de Señal , TranscriptomaRESUMEN
Myostatin (MSTN) is an important member of the transforming growth factor-ß (TGF-ß) superfamily and is a muscle growth inhibitor. In the present study, we cloned the Chinese perch MSTN cDNA sequence and analyzed its expression patterns under various conditions. The MSTN full cDNA sequence was 3347 bp long, including an open-reading frame of 1131 bp, which encoded 376 amino acids. Sequence analysis demonstrated that the MSTN shared a highly conserved signal peptide, a TGF-ß functional peptide, a hydrolytic site (RARR), and nine conservative cysteine residues with other members of the TGF-ß superfamily. Sequence alignment and phylogenetic tree analyses indicated that the MSTN had a close relationship with teleostean fish, but they are far separated from mammals. Real-time polymerase chain reaction analysis revealed that the MSTN was strongly expressed in the skeletal muscle and heart tissues. Temporal expression analysis demonstrated that the MSTN gene was expressed in very low levels, from 20 to 90 dph (post-hatching development), and was at its highest level at 150 dph (P < 0.05). The fasting-re-feeding experiment showed that the expression of the MSTN gene was initially decreased in response to a single meal, after seven days of fasting, and subsequently increased significantly, and finally decreased back to its original level. Together, our results provided valuable knowledge regarding the regulation of MSTN gene expression in Chinese perch.