Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(34): 14195-14205, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39238900

RESUMEN

The lithium-carbon monofluoride (Li-CF x ) couple has the highest specific energy of any practical battery chemistry. However, the large polarization associated with the CF x electrode (>1.5 V loss) limits it from achieving its full discharge energy, motivating the search for new CF x reaction mechanisms with reduced overpotential. Here, using a liquid fluoride (F)-ion conducting electrolyte at room temperature, we demonstrate for the first time the electrochemical defluorination of CF x cathodes, where metal fluorides form at a metal anode instead of the CF x cathode. F-ion primary cells were developed by pairing CF x cathodes with either lead (Pb) or tin (Sn) metal anodes, which achieved specific capacities of over 700 mAh g-1 and over 400 mAh g-1, respectively. Solid-state 19F and 119Sn{19F} nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman, inductively coupled plasma (ICP), and X-ray fluorescence (XRF) measurements establish that upon discharge, the CF x cathode defluorinates while Pb forms PbF2 and Sn forms both SnF4 and SnF2. Technological development of F-ion metal-CF x cells based on this concept represents a promising avenue for realizing primary batteries with high specific energy.

2.
ACS Appl Energy Mater ; 7(13): 5438-5446, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38994437

RESUMEN

Rechargeable aluminum (Al) metal batteries are enticing for the coming generation of electrochemical energy storage systems due to the earth abundance, high energy density, inherent safety, and recyclability of Al metal. However, few electrolytes can reversibly electrodeposit Al metal, especially at low temperatures. In this study, Al electroplating and stripping were investigated from 25 °C to -40 °C in mixtures of aluminum chloride (AlCl3), 1-ethyl-3-methyl-imidazolium chloride ([EMIm]Cl), and urea. The ternary ionic liquid analogue (ILA) consisting of AlCl3-urea-[EMIm]Cl in a molar ratio of 1.3:0.25:0.75 enabled reversible Al electrodeposition at temperatures as low as -40 °C while exhibiting the highest current density and the lowest overpotential among all of the electrolyte mixtures at 25 °C, including the AlCl3-[EMIm]Cl binary mixture. The ILA electrolyte was further tested in a rechargeable Al-graphite battery system down to -40 °C. The addition of urea to AlCl3-[EMIm]Cl binary mixtures can improve the Al electrodeposition, extend the liquid temperature window, and reduce the cost.

3.
J Phys Chem Lett ; 14(9): 2378-2386, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36848484

RESUMEN

Rechargeable zinc (Zn) metal batteries are attractive for use as electrochemical energy storage systems on a global scale because of the low cost, high energy density, inherent safety, and strategic resource security of Zn metal. However, at low temperatures, Zn batteries typically suffer from high electrolyte viscosity and unfavorable ion transport properties. Here, we studied reversible Zn electrodeposition in mixtures of 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]TFSI) ionic liquid, γ-butyrolactone (GBL) organic solvent, and Zn(TFSI)2 zinc salt. The electrolyte mixtures enabled reversible Zn electrodeposition at temperatures as low as -60 °C. An electrolyte composed of 0.1 M Zn(TFSI)2 in [EMIm]TFSI:GBL with a volume ratio of 1:3 formed a deep eutectic solvent that optimized electrolyte conductivity, viscosity, and the zinc diffusion coefficient. Liquid-state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and molecular dynamic (MD) simulations indicate increased formation of contact ion pairs and the reduction of ion aggregates are responsible for the optimal composition.

4.
J Magn Reson ; 348: 107374, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706465

RESUMEN

Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA