Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Small ; : e2408162, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279610

RESUMEN

Electrolyte engineering is recognized as an effective technique for high-performance aqueous zinc-ion rechargeable batteries, addressing difficulties such as free water decomposition, zinc anode corrosion, and zinc dendrite growth. Different from traditional strategies in aqueous electrolyte systems, this work focuses on organic electrolytes involving zinc trifluoroacetate hydrate (Zn(TFA)2·xH2O), sodium trifluoroacetate (NaTFA) dual-salt and acetonitrile (AN) solvent, in which trifluoroacetate anions (TFA- anions) have strong affinity toward zinc ions to form anion-rich solvates, thus inducing an inorganic-rich solid electrolyte interphase (SEI) to protect Zn from dendrite growth and side reactions. The Zn anode manifests long-term cycling over 2400 h at a current density of 0.5 mA cm-2 with a high Coulombic efficiency (CE) of 99.75%, showing an areal capacity as high as 5 mAh cm-2. Owing to the high reversibility of the sodium ions intercalation/deintercalation process in Na2MnFe(CN)6, the Zn//Na2MnFe(CN)6 full cells with the dual-salt electrolyte perform much better in terms of capacity retention than a device with Zn(TFA)2/AN electrolyte. This approach may open a new avenue for efficient zinc-ion rechargeable batteries via developing organic electrolytes.

2.
J Physiol Investig ; 67(4): 198-206, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39148295

RESUMEN

ABSTRACT: The role of microRNAs in regulating tubulointerstitial fibrosis, a key feature of progressive chronic kidney disease, is of significant importance. LIN28A has been reported to attenuate renal fibrosis in obstructive nephropathy. Here, our objective was to investigate the precise biological function of the miR-92a-3p/LIN28A axis in tubulointerstitial fibrosis. The human renal proximal tubular epithelial (HK-2) cell line was exposed to transforming growth factor (TGF)-ß1, establishing an in vitro model mimicking tubulointerstitial fibrosis. Luciferase reporter assay was utilized to investigate the relationship between miR-92a-3p and LIN28A. Cell transfection techniques were employed to modify the expression of miR-92a-3p and LIN28A. An in vivo model of tubulointerstitial fibrosis was created by inducing unilateral ureteral obstruction (UUO) in C57BL/6N mice. Our initial observations showed that TGF-ß1 treatment of HK-2 cells and the UUO mice model led to an increase in miR-92a-3p expression and a decrease in LIN28A expression. We confirmed that miR-92a-3p directly targeted LIN28A in HK-2 cells. In TGF-ß1-stimulated HK-2 cells, knocking down miR-92a-3p notably reduced the levels of alpha smooth muscle actin and vimentin and concurrently enhanced the expression of E-cadherin. These changes were counteracted upon transfection with si-LIN28A. Thus, directing interventions toward miR-92a-3p holds the potential to emerge as a viable therapeutic approach for addressing tubulointerstitial fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis , Ratones Endogámicos C57BL , MicroARNs , Proteínas de Unión al ARN , Factor de Crecimiento Transformador beta1 , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Animales , Humanos , Fibrosis/metabolismo , Fibrosis/genética , Fibrosis/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratones , Transición Epitelial-Mesenquimal/genética , Línea Celular , Masculino , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Técnicas de Silenciamiento del Gen
3.
Food Chem ; 460(Pt 2): 140564, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089015

RESUMEN

Eucommia ulmoides, a plant native to China, is valued for its medicinal properties and has applications in food, health products, and traditional Chinese medicine. Processed Eucommiae Cortex (EC) has historically been a highly valued medicine. Ancient doctors had ample experience processing EC, especially with ginger juice, as documented in traditional Chinese medical texts. The combination of EC and ginger juice helps release and transform the active ingredients, strengthening the medicine's effectiveness and improving its taste and shelf life. However, the lack of quality control standards for Ginger-Eucommiae Cortex (G-EC), processed from EC and ginger, presents challenges for its industrial and clinical use. This study optimized G-EC processing using the CRITIC and Box-Behnken methods. Metabolomics showed 517 chemical changes between raw and processed G-EC, particularly an increase in coniferyl aldehyde (CFA). Explainable artificial intelligence techniques revealed the feasibility of using color to CFA content, providing insights into quality indicators.


Asunto(s)
Inteligencia Artificial , Eucommiaceae , Metabolómica , Eucommiaceae/química , Eucommiaceae/metabolismo , Color , Aldehídos/análisis , Aldehídos/metabolismo , Aldehídos/química , Manipulación de Alimentos , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Zingiber officinale/química , Zingiber officinale/metabolismo
4.
Adv Sci (Weinh) ; : e2405975, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099416

RESUMEN

Lactate plays a critical role as an energy substrate, metabolite, and signaling molecule in hepatocellular carcinoma (HCC). Intracellular lactate-derived protein lysine lactylation (Kla) is identified as a contributor to the progression of HCC. Liver cancer stem cells (LCSCs) are believed to be the root cause of phenotypic and functional heterogeneity in HCC. However, the impact of Kla on the biological processes of LCSCs remains poorly understood. Here enhanced glycolytic metabolism, lactate accumulation, and elevated levels of lactylation are observed in LCSCs compared to HCC cells. H3K56la was found to be closely associated with tumourigenesis and stemness of LCSCs. Notably, a comprehensive examination of the lactylome and proteome of LCSCs and HCC cells identified the ALDOA K230/322 lactylation, which plays a critical role in promoting the stemness of LCSCs. Furthermore, this study demonstrated the tight binding between aldolase A (ALDOA) and dead box deconjugate enzyme 17 (DDX17), which is attenuated by ALDOA lactylation, ultimately enhancing the regulatory function of DDX17 in maintaining the stemness of LCSCs. This investigation highlights the significance of Kla in modulating the stemness of LCSCs and its impact on the progression of HCC. Targeting lactylation in LCSCs may offer a promising therapeutic approach for treating HCC.

5.
EMBO J ; 43(17): 3650-3676, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39020150

RESUMEN

Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas de Plantas , Solanum lycopersicum , Ubiquitinación , Solanum lycopersicum/inmunología , Solanum lycopersicum/virología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas NLR/metabolismo , Proteínas NLR/inmunología , Proteínas NLR/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Tospovirus/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Interacciones Huésped-Patógeno/inmunología
6.
Eur Heart J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976370

RESUMEN

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.

7.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054537

RESUMEN

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Asunto(s)
Células Madre Neoplásicas , Norepinefrina , Olanzapina , Animales , Olanzapina/farmacología , Ratones , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Norepinefrina/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Línea Celular Tumoral , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones , Ratones Endogámicos C57BL , Ansiedad/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Carcinogénesis/efectos de los fármacos , Depresión/tratamiento farmacológico
8.
Hematology ; 29(1): 2374127, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39007736

RESUMEN

OBJECTIVE: To investigate and compare the effects of basic preconditioning regimens Bu/Cy, Cy/TBI and Flu/Bu for the treatment of patients in allogeneic hematopoietic stem cell transplantation. METHODS: It comprised exploring the published literature in the databases of PubMed, EMBASE, Cochrane Library, and Web of Science, using suitable keywords pertaining to various basic pretreatments Bu/Cy, Cy/TBI, and Flu/Bu, prior to allogeneic hematopoietic stem cell transplantation, and then extracting the searched outcome indicators of Overall Survival (OS) and survival (herein represented as OS and survival). Further, the results were estimated with meta-analysis using R, where the incidence of GVHD was reported in odds ratio (OR) with its 95% confidence interval (95%CI). RESULTS AND DISCUSSION: A total of 14 papers were included in this study, including 1436 cases were treated with Bu/Cy, 1816 cases with Cy/TBI, and 549 cases with Flu/Bu in the preconditioning regimen. After OS was the outcome pooled, compared with Flu/Bu in the preconditioning group, the results (Cy/TBI HR = 1.12 (95% Cl:1.04,1.61), Bu/Cy HR = 1.24 (95% Cl. 1.13,2.06)) showed that Flu/Bu preconditioning regimen significantly improved the overall survival rate of allogeneic HSCT patients. With the incidence of GVHD as the outcome summary, compared with Flu/Bu in the pretreatment group, the results (Cy/TBI HR = 1.24 (95% Cl:1.12, 1.82), Bu/Cy HR = 1.14 (95% Cl. 1.03, 2.12)) indicated that Flu/Bu in the pretreatment regimen group also significantly reduced the incidence of GVHD after allogeneic HSCT. CONCLUSION: Patients who received the basal preconditioning regimen Flu/Bu before allogeneic hematopoietic stem cell transplantation had the lowest hazard ratio for overall survival (OS) development. This indicates that the use of the basal preconditioning regimen Flu/Bu for the treatment of patients was the most effective, although the quality of the studies included needs to be confirmed by high-quality randomized controlled trials.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Acondicionamiento Pretrasplante , Humanos , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/métodos , Metaanálisis en Red , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo
9.
Plant Direct ; 8(6): e610, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38903415

RESUMEN

Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (Oryza sativa L.), named albino lethal 13 (osal13), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that OsAL13 encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of OsAL13 led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of OsAL13 resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of OsAL13 in regulating chloroplast development in rice.

10.
Biomedicines ; 12(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927356

RESUMEN

BACKGROUND: Premature ventricular complexes (PVCs) are common electrocardiographic abnormalities and may be a prognosticator in predicting mortality in patients with structurally normal hearts or chronic heart diseases. Whether PVC burden was associated with mortality in patients with chronic atrial fibrillation (AF) remained unknown. We investigated the prognostic value of PVC burden in patients with persistent AF. METHODS: A retrospective analysis of 24 h Holter recordings of 1767 patients with persistent AF was conducted. Clinical characteristics, 24 h average heart rate (HR), and PVC measures, including 24 h PVC burden and the presence of consecutive PVCs (including any PVC couplet, triplet, or non-sustained ventricular tachycardia) were examined for the prediction of all-cause and cardiovascular mortality using the Cox proportional hazards model. RESULTS: After a median follow-up time of 30 months, 286 (16%) patients died and 1481 (84%) patients survived. Multivariate analysis revealed that age, heart failure, stroke, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, beta-blocker, digoxin, oral anticoagulant use, and estimated glomerular filtration rate were significant baseline predictors of all-cause mortality and cardiovascular mortality. Twenty-four-hour PVC burden and the presence of consecutive PVCs were significantly associated with all-cause and cardiovascular mortality after adjusting for significant clinical factors. When compared to the first quartile of PVC burden (<0.003%/day), the highest quartile (>0.3%/day) was significantly associated with an increased risk of all-cause mortality (hazard ratio, 2.46; 95% CI, 1.77-3.42) and cardiovascular mortality (hazard ratio: 2.67; 95% CI, 1.76-4.06). CONCLUSIONS: Twenty-four-hour PVC burden is independently associated with all-cause and cardiovascular mortality in patients with persistent AF.

11.
Cancer Cell Int ; 24(1): 197, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834986

RESUMEN

BACKGROUND: Syntaxin6 (STX6) is a SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein complex located in the trans-Golgi network and endosomes, which is closely associated with a variety of intracellular membrane transport events. STX6 has been shown to be overexpressed in a variety of human malignant tumors such as esophageal, colorectal, and renal cell carcinomas, and participates in tumorigenesis and development. METHODS: Based on clinical public database and clinical liver samples analysis, the expression of STX6 in hepatocellular carcinoma (HCC) tissues was investigated. The effects of STX6 on proliferation, migration and invasion of HCC cell in vitro and in vivo were evaluated through gain- and loss-of-function studies. We further performed RNA-seq analysis and protein interactome analysis, to further decifer the detailed mechanisms of STX6 in the regulation of the JAK-STAT pathway in HCC. RESULTS: STX6 expression was upregulated in HCC tissues and its expression was highly correlated with the high histological grade of the tumor. STX6 promoted HCC cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, STX6 mediated tumor progression depending on promoting the activation of JAK-STAT signaling pathway. Receptor for activated protein kinase C (RACK1) as an essential adaptor protein mediating STX6 regulation of JAK-STAT pathway. Specifically, STX6 interacted with RACK1 and then recruited signal transducer and activator of transcription 3 (STAT3) to form a protein-binding complex and activates STAT3 transcriptional activity. CONCLUSIONS: This study provided a novel concept that STX6 exerted oncogenic effects by activating the STAT3 signaling pathway, and STX6 might be a promising therapeutic target for HCC.

12.
Int Wound J ; 21(2): e14710, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38838072

RESUMEN

To explore the knowledge, attitudes and practice (KAP) status of preventing pressure injury among clinical nurses working in paediatric ICU, and to examine factors affecting nurses' KAP. A questionnaire survey was conducted among 1906 paediatric ICU nurses in 18 children's hospitals by convenience sampling method. The survey tools were self-designed general data questionnaire, KAP questionnaire for the prevention of pressure injury and the influencing factors were analysed. A total of 1906 valid questionnaires were collected. The scores of overall KPA, knowledge, attitudes, and practice were 101.24 ± 17.22, 20.62 ± 9.63, 54.93 ± 5.81and 25.67 ± 6.76, respectively. The results of multiple linear regression analysis showed that education background, professional title, age and specialist nurse were the main influencing factor of nurses' knowledge of preventing PI; education background and specialist nurse were the main influencing factors of nurses' attitudes of preventing PI; knowledge, attitudes and education background were the main influencing factors of nurses' practice of preventing PI. Paediatric ICU nurses have a positive attitude towards the prevention of PI, but their knowledge and practice need to be improved. According to different characteristics of nurses, nursing managers should carry out training on the knowledge of prevention of PI to establish a positive attitude, so as to drive the change of nursing practice and improve the nursing practice level of ICU nurses to prevent of PI.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Unidades de Cuidado Intensivo Pediátrico , Úlcera por Presión , Humanos , Úlcera por Presión/prevención & control , Femenino , Masculino , Encuestas y Cuestionarios , Adulto , Actitud del Personal de Salud , Personal de Enfermería en Hospital/psicología , Enfermería de Cuidados Críticos/métodos , Persona de Mediana Edad , Adulto Joven , Competencia Clínica/estadística & datos numéricos
13.
Blood Cells Mol Dis ; 108: 102862, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38889659

RESUMEN

This retrospective study at Beijing Children's Hospital (2020-2023) analyzed surgical procedures and complications in 24 pediatric hemophilia patients undergoing Totally Implantable Venous Access Port (TIVAP) insertion, primarily in the right jugular vein (RJV). We detailed the surgical process, including patient demographics and intraoperative imaging use. The choice of the RJV for TIVAP placement was influenced by its larger diameter and superficial anatomical position, potentially reducing risks like thrombosis and infection. Our findings support the RJV as a safer alternative for port placement in pediatric patients, aligning with current literature. Statistical analysis revealed no significant correlation between complications and baseline characteristics like weight and diagnosis type. However, the length of hospital stay and implant brand were significant risk factors for catheter or port displacement and removal. The limited patient number may introduce bias, suggesting a need for further studies with larger samples. Despite a 14.7 %-33 % complication rate and 5 port removals, the advantages of TIVAP, including reliable venous access, reduced discomfort, and treatment convenience, were evident. Most complications improved with symptomatic treatment, and there were no deaths due to port-related complications, underscoring the impact of TIVAP on improving pediatric hemophilia treatment.


Asunto(s)
Hemofilia A , Humanos , Hemofilia A/complicaciones , Hemofilia A/tratamiento farmacológico , Estudios Retrospectivos , Niño , Masculino , Preescolar , Adolescente , Femenino , Cateterismo Venoso Central/efectos adversos , Lactante , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Catéteres de Permanencia/efectos adversos , Venas Yugulares
14.
J Thorac Dis ; 16(5): 3338-3349, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38883659

RESUMEN

Background: The significant progress has been made in targeted therapy for lung adenocarcinoma (LUAD) in the past decade. Only few targeted therapeutics have yet been approved for the treatment of lung squamous cell carcinoma (LUSC). Several higher frequency of gene alterations are identified as potentially actionable in LUSC. Our work aimed to explore the complex interplay of multiple genetic alterations and pathways contributing to the pathogenesis of LUSC, with a very low frequency of a single driver molecular alterations to develop more effective therapeutic strategies in the future. Methods: We retrospectively analyzed the targeted next-generation sequencing (NGS) data (approximately 600 genes) of 335 patients initially diagnosed with non-small cell lung cancer (NSCLC) at our institution between January 2019 and March 2023 and explored the somatic genome alteration difference between LUSC and LUAD. Results: We analyzed that the presence of loss-of-function (LoF) mutations (nonsense, frameshift, and splice-site variants) in histone-lysine N-methyltransferase 2D (KMT2D) was much more prevalent in LUSC (11/53, 20.8%) than in LUAD (6/282, 2.1%). Moreover, our data indicated TP53 co-mutated with KMT2D LoF in 90.9% (10/11) LUSC and 33.3% (2/6) LUAD. Notably, the mutation allele fraction (MAF) of KMT2D was very similar to that of TP53 in the co-mutated cases. Genomic profiling of driver gene mutations of NSCLC showed that 81.8% (9/11) of the patients with LUSC with KMT2D LoF mutations had PIK3CA amplification and/or FGFR1 amplification. Conclusions: Our results prompted that somatic LoF mutations of KMT2D occur frequently in LUSC, but are less frequent in LUAD and therefore may potentially contribute to the pathogenesis of LUSC. Concurrent TP53 mutations, FGFR1 amplification, and PIK3CA amplification are very common in LUSC cases with KMT2D LoF mutations. It needs more deeper investigation on the interplay of the genes and pathways and uses larger cohorts in the future.

15.
Clin Kidney J ; 17(6): sfae124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38915441

RESUMEN

The ANKFY1 gene encodes a protein that belongs to double zinc finger proteins involved in endocytosis. Only one family with steroid-resistant nephrotic syndrome has been reported carrying a homozygous variant in ANKFY1 so far. Here we describe the second case where a 13-year-old boy presented with infantile-onset proteinuria and movement disorder. Whole-exome sequencing showed compound heterozygous variants (NM_001330063.2: c.2753C>G; p.Ser918Ter, and c.3287-11_3287-10del) in ANKFY1. In vitro functional study revealed the two variants led to reduced protein expression level of ANKFY1. This is the first case of co-existence of renal and nervous system phenotypes in a child with variants in ANKFY1, suggesting that bi-allelic variants in ANKFY1 might be associated with a new neuro-renal syndrome.

16.
Clin Genet ; 106(3): 354-359, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38780184

RESUMEN

Emerging research has demonstrated that genomic alterations disrupting topologically associated domains (TADs) and chromatin interactions underlie the pathogenic mechanisms of specific copy number variants (CNVs) in neurodevelopmental disorders. We report two patients with a de novo deletion and a duplication in chromosome 4q31, potentially causing FBX-related neurodevelopmental syndrome by affecting the regulatory region of FBXW7. High-throughput chromosome conformation capture (Hi-C) analysis using available capture data in neural progenitor cells revealed the rewiring of the TAD boundary close to FBXW7. Both patients exhibited facial dysmorphisms, cardiac and limb abnormalities, and neurodevelopmental delays, showing significant clinical overlap with previously reported FBXW7-related features. We also included an additional 10 patients with CNVs in the 4q31 region from the literature and the DECIPHER database for Hi-C analysis, which confirmed that disruption of the regulatory region of FBXW7 likely contributes to the developmental defects observed in these patients.


Asunto(s)
Cromosomas Humanos Par 4 , Variaciones en el Número de Copia de ADN , Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Variaciones en el Número de Copia de ADN/genética , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Cromosomas Humanos Par 4/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Predisposición Genética a la Enfermedad , Niño , Lactante
17.
Artículo en Inglés | MEDLINE | ID: mdl-38818918

RESUMEN

A malignant tumor is a frequent and common disease that severely threatens human health. Many mechanisms, such as cell signaling pathway, anti-apoptosis mechanism, cell stemness, metabolism, and cell phenotype, have been studied to explain the reasons for chemotherapy, radioresistance, and tumor recurrences in antitumor treatment. Cancer stem cells (CSCs) are important tumor cell subclasses that can potentially organize and regulate stem cell properties. Growing evidence suggests that CSCs can initiate tumors and constitute a significant factor in metastasis, recurrence, and treatment resistance. The inability to completely target and remove CSCs is a considerable obstacle in tumor treatment. Therefore, drugs and therapeutic strategies that can effectively intervene with CSCs are essential for the treatment of different tumor types. However, the current strategies and efficacy of targeted elimination of CSCs are very limited. Oxidative stress has been recognized to play a crucial role in cancer pathophysiology. Moreover, reactive oxygen species (ROS) production and imbalance of the built-in cellular antioxidant defense system are hallmarks of tumor and cancer etiology. The current paper will focus on the regulation and mechanism behind oxidative stress in tumors and cancer stem cells and its tumor therapy applications. Additionally, the article discusses the role of CSCs in causing tumor treatment resistance and recurrence based on a redox perspective. The study also emphasizes that targeted modulation of oxidative stress in CSCs has great potential in tumor therapy, providing novel prospects for tumor therapy.

18.
J Physiol Investig ; 67(2): 69-78, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780291

RESUMEN

ABSTRACT: Vascular calcification (VC), a major complication in chronic kidney disease (CKD), is predominantly driven by osteoblastic differentiation. Recent studies have highlighted the crucial role of microRNAs in CKD's pathogenesis. Here, our research focused on the effects of miR-204-5p and its molecular mechanisms within VC. We initially found a notable decrease in miR-204-5p levels in human aortic vascular smooth muscle cells stimulated with inorganic phosphate, using this as a VC model in vitro. Following the overexpression of miR-204-5p, a decrease in VC was observed, as indicated by alizarin red S staining and measurements of calcium content. This decrease was accompanied by lower levels of the osteogenic marker, runt-related transcription factor 2, and higher levels of α-smooth muscle actin, a marker of contractility. Further investigation showed that calcium/calmodulin-dependent protein kinase 1 (CAMK1), which is a predicted target of miR-204-5p, promotes VC. Conversely, overexpressing miR-204-5p reduced VC by suppressing CAMK1 activity. Overexpressing miR-204-5p also effectively mitigated aortic calcification in an in vivo rat model. In summary, our research indicated that targeting the miR-204-5p/CAMK1 pathway could be a viable strategy for mitigating VC in CKD patients.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , MicroARNs , Insuficiencia Renal Crónica , Calcificación Vascular , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Aorta Torácica/metabolismo , Aorta Torácica/patología , MicroARNs/farmacología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Miocitos del Músculo Liso/metabolismo , Diferenciación Celular , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Fosfatos/metabolismo
19.
Sci Total Environ ; 931: 172789, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38688368

RESUMEN

Organic and mineral fertilization increase crop productivity, but their combined effects on soil quality index (SQI) and ecosystem multifunctionality (EMF, defined as the capacity of soils to simultaneously provide multiple functions and services) are not clear. We conducted a 13-year field trial in North China Plain to examine how five maize-derived organic fertilizers (straw, manure, compost, biogas residue, and biochar) at equal C input rate (3.2 t C ha-1), with or without nitrogen (N) fertilization influenced topsoil (0-15 cm) physico-chemical properties, activities of enzymes responsible for carbon (C), N, and phosphorus (P) cycling, as well as SQI and soil EMF. Organic fertilizers with or without N increased SQI by 51-187 % and EMF by 31-351 % through the enhancement of soil physical (mean weight diameter of soil aggregates) and chemical properties (C, N, and P contents) as well as C, N, and P acquisition enzyme activities, albeit the biochar effects were of minor importance. N application increased EMF compared to soil without N. Soil quality increased with EMF. Random forest analysis revealed that microbial biomass C and N, available P, permanganate oxidizable C, dissolved organic C and N, mean weight diameter of aggregates, hot water extractable C, and electrical conductivity were the main contributions to soil EMF. We conclude that application of maize-derived organic fertilizers, especially compost and straw, with optimal N fertilization is a plausible strategy to increase SQI and EMF under a wheat/maize system.


Asunto(s)
Ecosistema , Fertilizantes , Nitrógeno , Suelo , Suelo/química , Nitrógeno/análisis , China , Agricultura/métodos , Fósforo/análisis , Zea mays , Carbono/análisis
20.
Nat Commun ; 15(1): 3205, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615015

RESUMEN

Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.


Asunto(s)
Ácido Abscísico , Transducción de Señal , Inhibición Psicológica , Dominios Proteicos , Hormonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA