Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Total Environ ; 951: 175717, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197785

RESUMEN

Plant and microbially derived carbon (C) are the two major sources of soil organic carbon (SOC), and their ratio impacts SOC composition, accumulation, stability, and turnover. The contributions of and the key factors defining the plant and microbial C in SOC with grassland patches are not well known. Here, we aim to address this issue by analyzing lignin phenols, amino sugars, glomalin-related soil proteins (GRSP), enzyme activities, particulate organic carbon (POC), and mineral-associated organic carbon (MAOC). Shrubby patches showed increased SOC and POC due to higher plant inputs, thereby stimulating plant-derived C (e.g., lignin phenol) accumulation. While degraded and exposed patches exhibited higher microbially derived C due to reduced plant input. After grassland degradation, POC content decreased faster than MAOC, and plant biomarkers (lignin phenols) declined faster than microbial biomarkers (amino sugars). As grassland degradation intensified, microbial necromass C and GRSP (gelling agents) increased their contribution to SOC formation. Grassland degradation stimulated the stabilization of microbially derived C in the form of MAOC. Further analyses revealed that microorganisms have a C and P co-limitation, stimulating the recycling of necromass, resulting in the proportion of microbial necromass C in the SOC remaining essentially stable with grassland degradation. Overall, with the grassland degradation, the relative proportion of the plant component decreases while than of the microbial component increases and existed in the form of MAOC. This is attributed to the physical protection of SOC by GRSP cementation. Therefore, different sources of SOC should be considered in evaluating SOC responses to grassland degradation, which has important implications for predicting dynamics in SOC under climate change and anthropogenic factors.


Asunto(s)
Carbono , Pradera , Microbiología del Suelo , Suelo , Carbono/metabolismo , Suelo/química
2.
Int J Biol Macromol ; 278(Pt 3): 134969, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179060

RESUMEN

The reactions involving enzymes are significantly influenced by various environmental factors. Clarity of how the activity and structure of proteases impact their function is crucial for more efficient application of enzymes as a tool. The impact of temperature, pH, and ionic strength on changes in protease activity, secondary structure, and protein conformation during enzymatic hydrolysis were investigated in this study. The enzymatic activity and secondary structure of acid-base protease were found to undergo significant modifications under different physical conditions, as demonstrated by UV spectrophotometry and FTIR spectroscopy analysis. Specifically, variations in α-helix and ß-fold content were observed to correlate with changes in enzyme activity. Molecular simulation analysis revealed that physical conditions have varying effects on the protease, particularly influencing enzyme activity and secondary structure. Evaluation of the proteases indicated alterations in both enzyme activity and structure. This treatment selectively hydrolyzed ß-lactoglobulin and reduced sensitization. These findings offer novel perspectives on the functionalities and regulatory mechanisms of proteases, as well as potential industrial applications.


Asunto(s)
Péptido Hidrolasas , Estructura Secundaria de Proteína , Hidrólisis , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Temperatura , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Concentración Osmolar , Simulación de Dinámica Molecular
3.
Int J Biol Macromol ; 278(Pt 3): 135017, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182867

RESUMEN

Proteases play a crucial role in industrial enzyme formulations, with activity fluctuations significantly impacting product quality and yield. Therefore, developing a method for precise and rapid detection of protease activity is paramount. This study aimed to develop a rapid and accurate method for quantifying trypsin activity using integrated infrared (IR) and ultraviolet (UV) spectroscopy combined with data fusion techniques. The developed method evaluates the enzymatic activity of trypsin under varying conditions, including temperature, pH, and ionic strength. By comparing different data fusion methods, the study identifies the optimal model for accurate enzyme activity prediction. The results demonstrated significant improvements in predictive performance using the feature-level data fusion approach. Additionally, substituting the spectral data of the samples in the validation sets into the best prediction model resulted in a minimal residual difference between predicted and true values, further verifying the model's accuracy and reliability. This innovative approach offers a practical solution for the efficient and precise quantification of enzyme activity, with broad applications in industrial processes.


Asunto(s)
Espectrofotometría Ultravioleta , Tripsina , Tripsina/química , Tripsina/metabolismo , Espectrofotometría Ultravioleta/métodos , Concentración de Iones de Hidrógeno , Temperatura , Espectrofotometría Infrarroja/métodos , Concentración Osmolar
4.
Int J Biol Macromol ; 276(Pt 1): 133732, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002919

RESUMEN

γ-aminobutyric acid (GABA) plays an important role in anti-anxiety by inhibiting neurotransmitter in the central nervous system (CNS) of mammals, which is generated in the germinating seeds. The key enzymes activity of GABA metabolism pathway and nutrients content in hemp seeds during germination were studied after treated with ultrasound and CaCl2. The mechanism of exogenous stress on key enzymes in GABA metabolism pathway was investigated by molecular dynamics simulation. The results showed that ultrasonic combined with 1.5 mmol·L-1CaCl2 significantly increased the activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T) in seeds, and promoted the conversion of glutamate to GABA, resulting in the decrease of glutamate content and the accumulation of GABA. Molecular dynamics simulations revealed that Ca2+ environment enhanced the activity of GAD and GABA-T enzymes by altering their secondary structure, exposing their hydrophobic residues. Ultrasound, germination and CaCl2 stress improved the nutritional value of hemp seeds.


Asunto(s)
Cloruro de Calcio , Cannabis , Germinación , Semillas , Cannabis/metabolismo , Cannabis/química , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Cloruro de Calcio/farmacología , Cloruro de Calcio/química , Ondas Ultrasónicas , Ácido gamma-Aminobutírico/metabolismo , Glutamato Descarboxilasa/metabolismo , Simulación de Dinámica Molecular , 4-Aminobutirato Transaminasa/metabolismo , 4-Aminobutirato Transaminasa/química
6.
Sci Total Environ ; 924: 171655, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492605

RESUMEN

Grassland restoration leads to excessive soils with carbon (C) and nitrogen (N) contents that are inadequate to fulfill the requirements of microorganisms. The differences in the stoichiometric ratios of these elements could limit the activity of microorganisms, which ultimately affects the microbial C, N use efficiencies (CUE, NUE) and the dynamics of soil C and N. The present study was aimed at quantifying the soil microbial nutrient limitation and exploring the mechanisms underlying microbial-induced C and N dynamics in chrono-sequence of restored grasslands. It was revealed that grassland restoration increased microbial C, N content, microbial C, N uptake, and microbial CUE and NUE, while the threshold elemental ratio (the C:N ratio) decreased, which is mainly due to the synergistic effect of the microbial biomass and enzymatic stoichiometry imbalance after grassland restoration. Finally, we present a framework for the nutrient limitation strategies that stoichiometric imbalances constrain microbial-driven C and N dynamics. These results are the direct evidence of causal relations between stoichiometric ratios, microbial responses, and soil C, N cycling.


Asunto(s)
Pradera , Suelo , Biomasa , Microbiología del Suelo , Nitrógeno/análisis , Carbono , Ecosistema , Fósforo
7.
Ying Yong Sheng Tai Xue Bao ; 35(1): 111-123, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511447

RESUMEN

Soil organic carbon (SOC) is the core component of terrestrial carbon (C) sink. Exploring the transformation and stabilization mechanism of SOC is key to understand the function of terrestrial C sink which copes with climate change. The traditional perspective is that plant residues are the initial source of SOC. The new concept of "soil microbial C pump" emphasizes that the synthesized products of soil microbial assimilation are important contributors to the stable SOC. This provides a new insight to the sequestration mechanism of SOC. Due to the complex and variable decomposition process of plant residues and the high heterogeneity of microbial residues, the transformation and stabilization mechanism of plant residues and microbial residues into SOC is still unclear. We reviewed research progress in plant and microbial residues, and introduced the characterization methods of quantification and transformation of plant residues and microbial residues, and also summarized the new findings on the transformation of plant and microbial residues into SOC. We further discussed the contribution and driving factors of microbial and plant-derived C to SOC. Finally, we prospected the future development direction and research focus in this field. This review would provide the scientific reference for the research of soil C sequestration in terrestrial ecosystem.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono , Secuestro de Carbono , Celulosa , Plantas , Microbiología del Suelo
8.
ACS Appl Mater Interfaces ; 16(13): 16482-16493, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506366

RESUMEN

The interfacial pyro-phototronic effect (IPPE) presents a novel approach for improving the performance of self-powered photodetectors (PDs) based on metal halide perovskites (MHPs). The interfacial contact conditions within the Schottky junctions are crucial in facilitating the IPPE phenomenon. However, the fabrication of an ideal Schottky junction utilizing MHPs is a challenging endeavor. In this study, we present a surface passivation method aimed at enhancing the performance of self-powered photodetectors based on inverted planar perovskite structures in micro- and nanoscale metal-halide perovskite SCs. Our findings demonstrate that the incorporation of a lead halide salt with a benzene ring moiety for surface passivation leads to a substantial improvement in photoresponses by means of the IPPE. Conversely, the inclusion of an alkane chain in the salt impedes the IPPE. The underlying mechanism can be elucidated through an examination of the band structure, particularly the work function (WF) modulated by surface passivation. Consequently, this alteration affects the band bending and the built-in field (VBi) at the interface. This strategy presents a feasible and effective method for producing interfacial pyroelectricity in MHPs, thus facilitating its potential application in practical contexts such as energy conversion and infrared sensors.

9.
J Environ Manage ; 354: 120289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367498

RESUMEN

Climate change-induced warming has the potential to intensify drought conditions in certain regions, resulting in uneven precipitation patterns. However, the impact of precipitation-induced changes on soil C-fixing bacterial community composition to changes and their subsequent effect on the accumulation of microbial necromass in the soil remains unclear. To address this knowledge gap, we conducted an in-situ simulated precipitation control experiment in semi-arid grasslands, encompassing five primary precipitation gradients: ambient precipitation as a control (contr), decreased precipitation by 80% and 40% (DP80, DP40), and increased precipitation by 40% and 80% (IP80, IP40). Our findings indicate that while an increase in precipitation promotes greater total bacterial diversity, it reduces the diversity of cbbM-harboring bacteria. The dominance of drought-tolerant Proteobacteria within the cbbM-harboring bacterial community was responsible for the observed increase in their relative abundance, ranging from 8.9% to 15.6%, under conditions of decreased precipitation. In arid environments characterized by limited soil moisture and nutrient availability, certain dominant genera such as Thiobacillus, Sulfuritalea, and Halothiobacillus, which possess cbbM genes, exhibit strong synergistic effects with other bacteria, thereby leading to a high nutrient use efficiency. Linear regression analysis shows that bacterial necromass C was significantly negatively correlated with cbbM-harboring bacterial diversity but positively correlated with cbbM-harboring bacterial community composition. Consequently, in the extreme drought environment of DP80, the contribution of bacterial necromass C to SOC was dramatically reduced by 75% relative to the control. Although bacterial necromass C was preferentially consumed as nutrients and energy for microorganisms, C-fixing microorganisms supplemented the soil C pool by assimilating atmospheric CO2. Bacterial necromass was primarily controlled by accessible C and N rather than by the total bacterial community composition and relative abundance. Our results provide compelling evidence for the critical role of the composition of the bacterial community and its necromass in the accumulation of SOC in semiarid grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Microbiología del Suelo , Bacterias , Suelo
10.
Sci Total Environ ; 912: 168961, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38042203

RESUMEN

Microplastics (MPs) are widely present in terrestrial ecosystems, but knowledge about the aging characteristics of MPs in different land-use types and their impact on soil organic carbon fractions is still limited. Polyethylene (PE) and biodegradable MPs (Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC + PBAT, Bio)), at 0 %, 0.03 %, and 0.3 % (w/w) dosages, were added to grassland, farmland, and facility soils for eight-week incubation. The aging degree of MPs was explored by quantifying the carbonyl index (CI). Soil organic C fractions such as SOC, particulate organic carbon (POC), mineral-associated organic carbon (MAOC), and microbial-derived C were analyzed. MPs underwent rapid aging after incubation, and the CI value for 0.03 % PE-MPs increased from 0.05 to 0.27 (farmland) and 0.26 (facility) (p < 0.05). The aging degree of 0.03 % and 0.3 % Bio-MPs was most significant in grassland, with CI decreasing by 46.6 % and 69.0 %, respectively. The CI of MPs were negatively correlated with their dosage. The 0.03 % and 0.3 % PE-MPs decreased soil organic carbon (SOC) content by 7.4 % and 8.2 % in grassland, and 3.0 % and 6.0 % in the facility (p < 0.05). POC content of farmland and facility soil was negatively correlated with PE-MPs' CI (p < 0.05). The 0.03 % PE and Bio-MPs decreased fungal necromass C (FNC) by 0.40 and 0.05 g kg-1 in grassland and 0.48 and 0.21 g kg-1 in farmland. Besides, the dosage of MPs regulated FNC content through soil pH, nutrients, and extracellular enzyme activity, either directly or indirectly, ultimately affecting the soil C pool. Therefore, this study demonstrates that MPs strongly affect SOC dynamics by influencing soil microbial enzyme activity and fungal necromass.


Asunto(s)
Plásticos , Suelo , Suelo/química , Microplásticos , Ecosistema , Carbono/química , Polietileno
11.
J Environ Manage ; 344: 118536, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392693

RESUMEN

Sequestration of soil organic carbon (SOC) is an effective means to draw atmospheric CO2. Grassland restoration is one of the fastest methods to increase soil C stocks, and particulate-associated C and mineral-associated C play critical roles in soil C stocks during restoration. Herein, we developed a conceptual mechanistic frame regarding the contributions made by mineral-associated organic matter to soil C during the restoration of temperate grasslands. Compared to 1-year grassland restoration, 30-year restoration increased mineral-associated organic C (MAOC) by 41% and particulate organic C (POC) by 47%. The SOC changed from microbial MAOC predominance to plant-derived POC predominance, as the POC was more sensitive to grassland restoration. The POC increased with plant biomass (mainly litter and root biomass), while the increase in MAOC was mainly caused by the combined effects of increasing microbial necromass and leaching of the base cations (Ca-bound C). Plant biomass accounted for 75% of the increase in POC, whereas bacterial and fungal necromass contributed to 58% of the variance in MAOC. POC and MAOC contributed to 54% and 46% of the increase in SOC, respectively. Consequently, the accumulation of the fast (POC) and slow (MAOC) pools of organic matter are important for the sequestration of SOC during grassland restoration. Overall, simultaneous tracing of POC and MAOC helps further understand the mechanisms and predict soil C dynamics combined with the input of plant C, microbial properties, and availability of soil nutrients during grassland restoration.


Asunto(s)
Carbono , Suelo , Pradera , Biomasa , Polvo , Minerales , Microbiología del Suelo , Secuestro de Carbono
12.
Imeta ; 2(1): e66, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868332

RESUMEN

In macroecology, the concept of r- and K-strategy has been widely applied, yet, there have been limited studies on microbial life-history strategies in temperate grasslands using multiple sequencing approaches. Total phospholipid fatty acid (PLFA) analysis, high-throughput meta-genomic sequencing, and GeoChip technologies were used to examine the changes in microbial life-history traits in a chronosequence of restored grasslands (1, 5, 10, 15, 25, and 30 years since restoration). Grassland restoration increased the relative abundances of Actinobacteria, Proteobacteria, and Bacteroidetes but reduced the relative abundances of Acidobacteria, Planctomycetes, and Chloroflexi. PLFA analysis revealed that grassland restoration reduced the fungi:bacteria and Gram-positive:Gram-negative bacteria ratios. Combined with the meta-genomic data, we found that grassland restoration shifted microorganisms from oligotrophic (K-) to copiotrophic (r-) groups, consistent with the increased rRNA operon copy number of the microbial community. Structural equation modeling showed that soil properties positively (p < 0.05) while plant properties negatively (p < 0.05) affected microbial life-history traits. We built a framework to highlight the importance of plant and soil properties in driving microbial life-history traits during grassland restoration. Finally, by incorporating meta-genomic and other microbiological data, this study showed that microbial life-history traits support the idea that rRNA operon copy number is a trait that reflects resource availability to soil microorganisms.

13.
Food Funct ; 13(24): 12674-12685, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36382616

RESUMEN

With the acceleration of the pace of life, people may face all kinds of pressure, and anxiety has become a common mental issue that is seriously affecting human life. Safe and effective food-derived compounds may be used as anti-anxiety compounds. In this study, anti-anxiety compounds were collected and curated for database construction. Quantitative structure-activity relationship (QSAR) models were developed using a combination of various machine-learning approaches and chemical descriptors to predict natural compounds in food with anti-anxiety effects. High-throughput molecular docking was used to screen out compounds that could function as anti-anxiety molecules by inhibiting γ-aminobutyrate transaminase (GABA-T) enzyme, and 7 compounds were screened for in vitro activity verification. Pharmacokinetic analysis revealed three compounds (quercetin, lithocholic acid, and ferulic acid) that met Lipinski's Rule of Five and inhibited the GABA-T enzyme to alleviate anxiety in vitro. The established QSAR model combined with molecular docking and molecular dynamics was proved by the synthesis and discovery of novel food-derived anti-anxiety compounds.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Ácido gamma-Aminobutírico
14.
Sci Total Environ ; 838(Pt 2): 156191, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618124

RESUMEN

The impact of the long-term uneven precipitation distribution model on the diversity and community composition of soil C-fixing microorganisms in arid and semiarid grasslands remains unclear. In 2015, we randomly set up five experimental plots with precipitation gradients on the natural restoration grassland of the Loess Plateau (natural precipitation, NP; ± 40% natural precipitation: decreased precipitation (DP), DP40; increased precipitation (IP), IP40; ± 80% natural precipitation: DP80; IP80). In the third and fifth years after the experimental layout (spanned two years), we explored the cbbL-genes, which are functional genes in the Calvin cycle, harboring microbial diversity and community composition under different precipitation treatments. The results showed that the increase in mean annual precipitation significantly changed the cbbL-harboring microbial alpha diversity, especially when controlling for 40% natural precipitation. The response of the dominant microbial communities to interannual increased precipitation variation shifted from Gammaproteobacteria (Bradyrhizobium) to Betaproteobacteria (Variovorax). The structural equation model showed that precipitation directly affected the cbbL-harboring microbial diversity and community composition and indirectly by affecting soil NO3- (mg N kg -1), soil organic matter, dissolved organic N content, and above- and underground biomass. In conclusion, studying how cbbL-harboring microbial diversity and community composition respond to uneven precipitation variability provides new insights into the ecological processes of C-fixing microbes in semi-arid naturally-restored grasslands dominated by the Calvin cycle.


Asunto(s)
Pradera , Microbiota , Biomasa , Suelo/química , Microbiología del Suelo
15.
Biology (Basel) ; 10(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34943176

RESUMEN

Drylands provide crucial ecosystem and economic services across the globe. In barren drylands, keystone taxa drive microbial structure and functioning in soil environments. In the current study, the Chinese Loess plateau's agricultural (AL) and twenty-year-old rehabilitated lands (RL) provided a unique opportunity to investigate land-use-mediated effects on barren soil keystone bacterial and fungal taxa. Therefore, soils from eighteen sites were collected for metagenomic sequencing of bacteria specific 16S rRNA and fungi specific ITS2 regions, respectively, and to conduct molecular ecological networks and construct microbial OTU-based correlation matrices. In RL soils we found a more complex bacterial network represented by a higher number of nodes and links, with a link percentage of 77%, and a lower number of nodes and links for OTU-based fungal networks compared to the AL soils. A higher number of keystone taxa was observed in the RL (66) than in the AL (49) soils, and microbial network connectivity was positively influenced by soil total nitrogen and microbial biomass carbon contents. Our results indicate that plant restoration and the reduced human interventions in RL soils could guide the development of a better-connected microbial network and ensure sufficient nutrient circulation in barren soils on the Loess plateau.

16.
Sci Total Environ ; 751: 142273, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182000

RESUMEN

A change in precipitation caused by climate change is an important factor that affects the biodiversity and ecological function of arid and semi-arid regions, but its influence on the composition and function of the soil fungi community in the grasslands of the Loess Plateau remains unclear. To fill this knowledge gap, we conducted an in-situ simulation experiment using five precipitation gradients (natural precipitation, increased and decreased by 40%, and 80%) in a natural restoration grassland for three years. The composition of soil fungal communities and their functions were analyzed using high-throughput sequencing techniques. Although the change of precipitation did not change the diversity index of soil fungi, it changed the composition and function of dominant fungal community groups. Specifically, decreased precipitation resulted in an increase in the relative abundance of Dothideomycetes and Boeremia by up to 12.17% and 9.93%, respectively, while these decreased with increased precipitation. The abundance of Basidiomycota, Glomeromycota, and Agaricomycetes abundance decreased by up to 11.27%, 6.96%, and 11.46% with decreased precipitation, but also decreased by up to 10.9%, 1.73%, and 10.51% with increased precipitation, respectively. However, the abundance of Ascomycota, Pezizomycetes, and norank_Pezizales increased by up to 22.58%, 7.45%, and 6.95% with decreased precipitation, and increased by up to 12.05%, 8.43%, and 5.81% with increased precipitation, respectively. The number of dominant fungal groups with interactive relationships weakened by 34.93% and 8.7% under decreased precipitation by 80% and increased 80%, respectively. Precipitation change had no significant effect on the proportion of saprotrophs, while a decrease of precipitation increased the endophyte-plant pathogens by up to 58.0% and decreased arbuscular mycorrhizal fungi by up to 92.6%. In brief, the dominant soil fungal communities could adapt and respond to climate change by altering the proportion of different dominant fungal groups by responding to moisture patterns with changes in the interrelationships between microbial communities and the proportional distribution of functional groups.


Asunto(s)
Microbiota , Micobioma , Pradera , Suelo , Microbiología del Suelo
17.
ACS Omega ; 5(48): 31036-31043, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324811

RESUMEN

To study the salt effect of recovering N-methyl-2-pyrrolidone (NMP) from the waste liquid produced in the polyphenylene sulfide (PPS) synthesis process, this study presents vapor-liquid equilibrium (VLE) measurement and correlation for water + NMP, water + NMP + lithium chloride, and water + NMP + sodium chloride at p = 101.3 kPa. The salt effect is discussed and the salts follow the order of lithium chloride > sodium chloride. The NRTL model was used for the correlation with binary parameters of water + NMP, water + NMP + lithium chloride, and water + NMP + sodium chloride. The correlation showed good agreement with experimental data; root-mean-square deviations are less than 0.48 K for the equilibrium temperature and 0.005 for the vapor-phase mole fraction of water.

18.
Huan Jing Ke Xue ; 41(9): 4284-4293, 2020 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-33124310

RESUMEN

As the main participants of ecosystem functions, the response of microorganisms to variations in soil moisture caused by the changes in precipitation amounts should be quantified to evaluate the impact of climate change on semi-arid ecosystems. For this purpose, a two-year simulation of the changes in the rainfall patterns was conducted on the Loess Plateau, and five precipitation treatments (80% and 40% decrease in precipitation, D80, D40; natural precipitation, NP; 40% and 80% increase in precipitation, I40, I80) were set up. The results showed that: ① Compared with NP, the carbon-to-nitrogen ratio (C/N) was lower in DP80 or IP80, while it reached the maximum value in I40. The mean C/N value of the 0-20 cm soil layer was 10.76. The microbial biomass carbon to microbial biomass nitrogen ratio (MBC/MBN) varied significantly with the soil layer in the treatments of D80 and I80, and the maximum value was 14.15 in D80. ② In the grassland soil naturally growing on the Loess Plateau, at the phylum level, the dominant phyla were Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. At the class level, Actinobacteria, Acidobacteria, α-Proteobacteria, and Thermomicrobia were predominant. ③ RDA analysis showed that changes in soil dissolve organic carbon (DOC), dissolved organic nitrogen (DON), elemental carbon (EC), and pH values were the main factors affecting the distribution of soil bacteria under the five precipitation treatments in the study area. Overall, 80% increase or decrease in precipitation has a significant impact on soil active organic carbon content and bacterial abundance, especially D80. In conclusion, drought or extreme precipitation may considerably change the active organic matter content and bacterial community diversity and abundance in the soils of the Loess Plateau.


Asunto(s)
Ecosistema , Suelo , Carbono/análisis , China , Pradera , Humanos , Nitrógeno/análisis , Microbiología del Suelo
19.
Waste Manag ; 95: 306-315, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351616

RESUMEN

Elucidating the mechanism of nitrogen conversion during composting is crucial for controlling nutrient loss and improving the quality of compost. To explore the enzymatic mechanism of organic conversion during composting, composting experiments using vegetable waste and chicken manure mixed with wheat straw and corn stalk as two separate treatments: WS and CS, respectively, were conducted in 63 L aerated static pile reactors for 33 d. The changes in the nitrogen fractions and related-enzymes activities were analyzed during different periods. The total nitrogen content increased by 34.3% during WS and decreased by 6.22% during CS after 33d of composting. The ammounium nitrogen content decreased by 79.6% and 51.4% during WS and CS. The nitrate, nitrite, organic, acid-insoluble organic nitrogen contents increased by approximately 52.6-123.9%, 590.9-5875%, 59.1-213.8%, and 764.4-7834.1%, respectively. The amount of total hydrolysable organic nitrogen increased by 18.8% during WS and decreased by 26.7% in CS. Structural equation modeling revealed that the contributions of different types of nitrogen to the formation of NH4+ during WS composting decreased as follows: amine nitrogen (AN) > amino acid nitrogen (AAN) > amino sugar nitrogen (ASN) > hydrolysable unknown nitrogen (HUN), while the corresponding nitrogen contributions during CS decreased as follows: AAN > AN > HUN > ASN. The AN and AAN were most easily converted into NH4+ during WS and CS, respectively, while ASN was synthesized from NH4+ during vegetable waste composting. Using redundancy analysis it was revealed that nitrate reductase (50.1%), nitrite reductase (23.2%) and urease (7.1%) played leading roles in nitrogen transformation. Furthermore, total organic carbon (59.6%) was the main factor that affected enzymes activities.


Asunto(s)
Compostaje , Amoníaco , Estiércol , Nitrógeno , Suelo , Verduras
20.
Beilstein J Nanotechnol ; 8: 2680-2688, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29354340

RESUMEN

In this paper, novel L-lysine-modified graphene oxide (Lys-GO) was synthesized through amidation. The morphological and structural properties of Lys-GO were characterized using infrared spectrometry, scanning electronic microscopy and X-ray photoelectron spectroscopy. The as-prepared Lys-GO material was systematically investigated in a series of batch adsorption experiments for the removal of methylene blue (MB) and copper ions (Cu2+) from wastewater. These results showed that Lys-GO is a bifunctional adsorbent for the removal of dyes and metal ions, and excellent adsorption efficiency was obtained. The maximum adsorption capacities for MB dye and Cu2+ were 1679.1 mg/g and 186.9 mg/g at 35 °C, respectively. The kinetics of adsorption followed well the linear pseudo-second-kinetic model. The isotherm results indicated that MB adsorption can be described with the Langmuir isotherm model, while the adsorption of Cu2+ can be described with the Freundlich model. The excellent adsorption capacity indicated that the Lys-GO may be a promising adsorption material for the removal of environmental pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA