Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(4): e202316469, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38051820

RESUMEN

Skutterudites are of high interest in current research due to their diversity of structures comprising empty, partially filled and filled variants, mostly based on metallic compounds. We herein present Ba12 [BN2 ]6.67 H4 , forming a non-metallic filled anti-skutterudite. It is accessed in a solid-state ampoule reaction from barium subnitride, boron nitride and barium hydride at 750 °C. Single-crystal X-ray and neutron powder diffraction data allowed to elucidate the structure in the cubic space group Im 3 ‾ ${\bar{3}}$ (no. 204). The barium and hydride atoms form a three-dimensional network consisting of corner-sharing HBa6 octahedra and Ba12 icosahedra. Slightly bent [BN2 ]3- units are located in the icosahedra and the voids in-between. 1 H and 11 B magic angle spinning (MAS) NMR experiments and vibrational spectroscopy further support the structure model. Quantum chemical calculations coincide well with experimental results and provide information about the electronic structure of Ba12 [BN2 ]6.67 H4 .

2.
Angew Chem Int Ed Engl ; 62(50): e202313564, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37905748

RESUMEN

Multianionic metal hydrides, which exhibit a wide variety of physical properties and complex structures, have recently attracted growing interest. Here we present Sr6 N[BN2 ]2 H3 , prepared in a solid-state ampoule reaction at 800 °C, as the first combination of nitridoborate, nitride and hydride anions within a single compound. The crystal structure was solved from single-crystal X-ray and neutron powder diffraction data in space group P21 /c (no. 14), revealing a three-dimensional network of undulated layers of nitridoborate units, strontium atoms and hydride together with nitride anions. Magic angle spinning (MAS) NMR and vibrational spectroscopy in combination with quantum chemical calculations further confirm the structure model. Electrochemical measurements suggest the existence of hydride ion conductivity, allowing the hydrides to migrate along the layers.

3.
Chemistry ; 29(41): e202301241, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37223991

RESUMEN

Metal hydrides are an uprising compound class bringing up various functional materials. Due to the low X-ray scattering power of hydrogen, neutron diffraction is often crucial to fully disclose the structural characteristics thereof. We herein present the second strontium nitridoborate hydride known so far, Sr13 [BN2 ]6 H8 , formed in a solid-state reaction of the binary nitrides and strontium hydride at 950 °C. The crystal structure was elucidated based on single-crystal X-ray and neutron powder diffraction in the hexagonal space group P63 /m (no. 176), exhibiting a novel three-dimensional network of [BN2 ]3- units and hydride anions connected by strontium cations. Further analyses with magic angle spinning (MAS) NMR and vibrational spectroscopy corroborate the presence of anionic hydrogen within the structure. Quantum chemical calculations reveal the electronic properties and support the experimental outcome. Sr13 [BN2 ]6 H8 expands the emerging family of nitridoborate hydrides, broadening the access to an open field of new, intriguing materials.

4.
Inorg Chem ; 61(32): 12685-12691, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35917523

RESUMEN

Combining different anions in one material allows tuning of its structural, magnetic, and electronic properties. We hereby present the mixed anion compound Sr2BN2H, expanding the less-known class of nitridoborate hydrides. Solid-state reaction of Sr2N, BN, and SrH2 at 850 °C in a tube furnace yielded a gray, air- and moisture-sensitive powder of Sr2BN2H. It crystallizes as colorless platelets in the orthorhombic space group Pnma (no. 62) with a = 9.9164(2), b = 3.9079(1), and c = 10.1723(2) Å and Z = 4. An initial structural model was obtained from single-crystal X-ray diffraction data and corroborated by neutron powder diffraction data of the corresponding deuteride. Further validation by 1H and 11B MAS NMR, FTIR, and Raman spectroscopy complements the structural proof of anionic hydrogen present in the compound. Quantum chemical calculations support the experimental findings and reveal the electronic structure of Sr2BN2H.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA