Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652538

RESUMEN

Heat shock transcription factors (Hsfs) are a class of important transcription factors (TFs) which play crucial roles in the protection of plants from damages caused by various abiotic stresses. The present study aimed to characterize the Hsf genes in carnation (Dianthus caryophyllus), which is one of the four largest cut flowers worldwide. In this study, a total of 17 non-redundant Hsf genes were identified from the D. caryophyllus genome. Specifically, the gene structure and motifs of each DcaHsf were comprehensively analyzed. Phylogenetic analysis of the DcaHsf family distinctly separated nine class A, seven class B, and one class C Hsf genes. Additionally, promoter analysis indicated that the DcaHsf promoters included various cis-acting elements that were related to stress, hormones, as well as development processes. In addition, cis-elements, such as STRE, MYB, and ABRE binding sites, were identified in the promoters of most DcaHsf genes. According to qRT-PCR data, the expression of DcaHsfs varied in eight tissues and six flowering stages and among different DcaHsfs, even in the same class. Moreover, DcaHsf-A1, A2a, A9a, B2a, B3a revealed their putative involvement in the early flowering stages. The time-course expression profile of DcaHsf during stress responses illustrated that all the DcaHsfs were heat- and drought-responsive, and almost all DcaHsfs were down-regulated by cold, salt, and abscisic acid (ABA) stress. Meanwhile, DcaHsf-A3, A7, A9a, A9b, B3a were primarily up-regulated at an early stage in response to salicylic acid (SA). This study provides an overview of the Hsf gene family in D. caryophyllus and a basis for the breeding of stress-resistant carnation.


Asunto(s)
Dianthus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Dianthus/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Familia de Multigenes , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
2.
Front Plant Sci ; 6: 519, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236320

RESUMEN

Carnation (Dianthus caryophyllus L.) is an important flower crop, having substantial commercial value as a cut-flower due to the long vase-life and wide array of flower colors and forms. Standard carnation varieties perform well under cool climates but are very susceptible to high temperatures which adversely affect the yield and the quality of the cut-flowers. Despite several studies of carnation contributing to the number of expressed sequence tags (ESTs), transcriptomic information of this species remains very limited, particularly regarding abiotic stress-related genes. Here, transcriptome analysis was performed to generate expression profiles of heat stress (HS)-responsive genes in carnation. We sequenced a cDNA library constructed with mixed RNA from carnation leaves subjected to 42°C HS (0, 0.5, 1, and 2 h) and 46°C HS (0.5, 1, and 2 h), and obtained 45,604,882 high quality paired-end reads. After de novo assembly and quantitative assessment 99,255 contigs were generated with an average length of 1053 bp. We then obtained functional annotations by aligning contigs with public protein databases including NR, SwissProt, KEGG, and COG. Using the above carnation transcriptome as the reference, we compared the effects of high temperature treatments (42°C: duration 0.5, 2, or 12 h) delivered to aseptic carnation seedlings, relative to untreated controls, using the FPKM metric. Overall, 11,471 genes were identified which showed a significant response to one or more of the three HS treatment times. In addition, based on GO and metabolic pathway enrichment analyses, a series of candidate genes involved in thermo-tolerance responses were selected and characterized. This study represents the first expression profiling analysis of D. caryophyllus under heat stress treatments. Numerous genes were found to be induced in response to HS, the study of which may advance our understanding of heat response of carnation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA