Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 26146, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27184859

RESUMEN

Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA