RESUMEN
The eastern oyster, Crassostrea virginica, provides critical ecosystem services and supports valuable fishery and aquaculture industries in northern Gulf of Mexico (nGoM) subtropical estuaries where it is grown subtidally. Its upper critical thermal limit is not well defined, especially when combined with extreme salinities. The cumulative mortalities of the progenies of wild C. virginica from four nGoM estuaries differing in mean annual salinity, acclimated to low (4.0), moderate (20.0), and high (36.0) salinities at 28.9 °C (84 °F) and exposed to increasing target temperatures of 33.3 °C (92 °F), 35.6 °C (96 °F) or 37.8 °C (100 °F), were measured over a three-week period. Oysters of all stocks were the most sensitive to increasing temperatures at low salinity, dying quicker (i.e., lower median lethal time, LT50) than at the moderate and high salinities and resulting in high cumulative mortalities at all target temperatures. Oysters of all stocks at moderate salinity died the slowest with high cumulative mortalities only at the two highest temperatures. The F1 oysters from the more southern and hypersaline Upper Laguna Madre estuary were generally more tolerant to prolonged higher temperatures (higher LT50) than stocks originating from lower salinity estuaries, most notably at the highest salinity. Using the measured temperatures oysters were exposed to, 3-day median lethal Celsius degrees (LD50) were estimated for each stock at each salinity. The lowest 3-day LD50 (35.1-36.0 °C) for all stocks was calculated at a salinity of 4.0, while the highest 3-day LD50 (40.1-44.0 °C) was calculated at a salinity of 20.0.
Asunto(s)
Crassostrea/fisiología , Calentamiento Global , Tolerancia a la Sal , Animales , Biomasa , Crassostrea/crecimiento & desarrollo , Golfo de México , TermotoleranciaRESUMEN
ABSTRACT: Desiccation is a routine farming practice used in off-bottom oyster aquaculture to reduce biofouling organisms and improve shell quality. This practice can increase Vibrio parahaemolyticus and Vibrio vulnificus levels, leading to increased risk of illness for raw oyster consumers. Previous resubmersion studies were performed in geographic proximity to one another, so to better understand the broader applicability of resubmersion, the next step was to perform concurrent studies in multiple geographic locations within a region. This study evaluated the effect of variations in geographic location on the recovery time needed for elevated vibrio levels to return to ambient levels in desiccated oysters after resubmersion at Gulf Coast farms. Two trials were performed between May and August 2019 at sites spanning â¼100 km: three in Alabama and one in Florida. Oysters were deployed in OysterGro cages at each location, 2 weeks before each trial, and then either were desiccated for 24 h or remained submersed as controls. Triplicate samples were taken before and immediately following the desiccation period, as well as 7 and 14 days after resubmersion. Total and pathogenic V. parahaemolyticus and V. vulnificus levels were determined using most-probable-number (MPN) real-time PCR. Vibrio levels increased by 0.23 to 3.50 log MPN/g after desiccation. Recovery times varied among geographic locations by trial and Vibrio spp., with all vibrio counts recovering to levels not significantly higher than those in control oysters within 7 to 14 days of resubmersion (P ≥ 0.06). These results suggest a 14-day resubmersion period of cultured oysters allowed vibrio levels, elevated because of routine handling, to return to ambient levels at all farm sites studied.
Asunto(s)
Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Desecación , Contaminación de Alimentos/análisis , Golfo de MéxicoRESUMEN
The eastern oyster, Crassostrea virginica, is a foundation species within US Gulf of Mexico (GoM) estuaries that has experienced substantial population declines. As changes from management and climate are expected to continue to impact estuarine salinity, understanding how local oyster populations might respond and identifying populations with adaptations to more extreme changes in salinity could inform resource management, including restoration and aquaculture programs. Wild oysters were collected from four estuarine sites from Texas [Packery Channel (PC): 35.5, annual mean salinity, Aransas Bay (AB): 23.0] and Louisiana [Calcasieu Lake (CL): 16.2, Vermilion Bay (VB): 7.4] and spawned. The progeny were compared in field and laboratory studies under different salinity regimes. For the field study, F1 oysters were deployed at low (6.4) and intermediate (16.5) salinity sites in Alabama. Growth and mortality were measured monthly. Condition index and Perkinsus marinus infection intensity were measured quarterly. For the laboratory studies, mortality was recorded in F1 oysters that were exposed to salinities of 2.0, 4.0, 20.0/22.0, 38.0 and 44.0 with and without acclimation. The results of the field study and laboratory study with acclimation indicated that PC oysters are adapted to high-salinity conditions and do not tolerate very low salinities. The AB stock had the highest plasticity as it performed as well as the PC stock at high salinities and as well as Louisiana stocks at the lowest salinity. Louisiana stocks did not perform as well as the Texas stocks at high salinities. Results from the laboratory studies without salinity acclimation showed that all F1 stocks experiencing rapid mortality at low salinities when 3-month oysters collected at a salinity of 24 were used and at both low and high salinities when 7-month oysters collected at a salinity of 14.5 were used.
RESUMEN
Estuarine organisms were impacted by the Deepwater Horizon oil spill which released â¼5 million barrels of crude oil into the Gulf of Mexico in the spring and summer of 2010. Crassostrea virginica, the American oyster, is a keystone species in these coastal estuaries and is routinely used for environmental monitoring purposes. However, very little is known about their cellular and molecular responses to hydrocarbon exposure. In response to the spill, a monitoring program was initiated by deploying hatchery-reared oysters at three sites along the Alabama and Mississippi coast (Grand Bay, MS, Fort Morgan, AL, and Orange Beach, AL). Oysters were deployed for 2-month periods at five different time points from May 2010 to May 2011. Gill and digestive gland tissues were harvested for gene expression analysis and determination of aliphatic and polycyclic aromatic hydrocarbon (PAH) concentrations. To facilitate identification of stress response genes that may be involved in the hydrocarbon response, a nearly complete transcriptome was assembled using Roche 454 and Illumina high-throughput sequencing from RNA samples obtained from the gill and digestive gland tissues of deployed oysters. This effort resulted in the assembly and annotation of 27,227 transcripts comprised of a large assortment of stress response genes, including members of the aryl hydrocarbon receptor (AHR) pathway, Phase I and II biotransformation enzymes, antioxidant enzymes and xenobiotic transporters. From this assembly several potential biomarkers of hydrocarbon exposure were chosen for expression profiling, including the AHR, two cytochrome P450 1A genes (CYP1A-like 1 and CYP1A-like 2), Cu/Zn superoxide dismutase (CuZnSOD), glutathione S-transferase theta (GST theta) and multidrug resistance protein 3 (MRP3). Higher expression levels of GST theta and MRP3 were observed in gill tissues from all three sites during the summer to early fall 2010 deployments. Linear regression analysis indicated a statistically significant relationship between total PAH levels in digestive gland tissue samples with CYP1A-like 2, CuZnSOD, GST theta and MRP3 induction. These observations provide evidence of a potentially conserved AHR pathway in invertebrates and yield new insight into the development of novel biomarkers for use in environmental monitoring activities.