Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063835

RESUMEN

Quinacridone (QA) and 2,9-dimethylquinacridone (DQA) are synthetic substances suitable as a hard, abrasion-resistant, self-organizing gliding layer on ice and snow. For sustainable use, a large number of parameters must be considered to demonstrate that these non-biogenic substances and their by-products and degradation products are harmless to humans and the environment in the quantities released. For this task, available experimental data are used and supplemented for all tautomers by numerous relevant physical, chemical, toxicological and ecotoxicological estimated values based on various Quantitative Structure Activity Relationship (QSAR) methods. On the one hand, the low solubility of QA and DQA leads to stable gliding layers and thus, low abrasion and uptake by plants, animals and humans. On the other hand, the four hydrogen bond forming functional groups per molecule allow nanoparticle decomposition and enzymatic degradation in natural environments. All available data justify a sustainable use of QA and DQA as a gliding layer. The assessment of the toxicological properties is complemented by an investigation of the size and morphology of DQA particles, as well as field tests indicating excellent performance as a gliding layer on snow.

2.
Nat Commun ; 9(1): 4888, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459353

RESUMEN

Radical fluorination has been known for a long time, but synthetic applications were severely limited by the hazardous nature of the first generation of reagents such as F2 and the strongly electrophilic nature of the second generation of reagents such as N-fluorobenzenesulfonimide (NFSI) and Selecfluor®. Here, we report the preparation, use and properties of N-fluoro-N-arylsulfonamides (NFASs), a class of fluorinating reagents suitable for radical fluorination under mild conditions. Their N-F bond dissociation energies (BDE) are 30-45 kJ mol-1 lower than the N-F BDE of the reagents of the second generation. This favors clean radical fluorination processes over undesired side reactions. The utility of NFASs is demonstrated by a metal-free radical hydrofluorination of alkenes including an efficient remote C-H fluorination via a 1,5-hydrogen atom transfer. NFASs have the potential to become the reagents of choice in many radical fluorination processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA