Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Sel Evol ; 56(1): 57, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107702

RESUMEN

BACKGROUND: The effects of environmental disturbances on livestock are often observed indirectly through the variability patterns of repeated performance records over time. Sheep are frequently exposed to diverse extensive environments but currently lack appropriate measures of resilience (or sensitivity) towards environmental disturbance. In this study, random regression models were used to analyse repeated records of the fibre diameter of wool taken along the wool staple (bundle of wool fibres) to investigate how the genetic and environmental variance of fibre diameter changes with different growing environments. RESULTS: A model containing a fifth, fourth and second-order Legendre polynomial applied to the fixed, additive and permanent environmental effects, respectively, was optimal for modelling fibre diameter along the wool staple. The additive genetic and permanent environmental variance both showed variability across the staple length trajectory. The ranking of sire estimated breeding values (EBV) for fibre diameter was shown to change along the staple and the genetic correlations decreased as the distance between measurements along the staple increased. This result suggests that some genotypes were potentially more resilient towards the changes in the growing environment compared to others. In addition, the eigenfunctions of the random regression model implied the ability to change the fibre diameter trajectory to reduce its variability along the wool staple. CONCLUSIONS: These results show that genetic variation in fibre diameter measured along the wool staple exists and this could be used to provide greater insight into the ability to select for resilience in extensively raised sheep populations.


Asunto(s)
Variación Genética , Animales , Ovinos/genética , Fibra de Lana , Lana , Cruzamiento/métodos , Modelos Genéticos , Masculino , Genotipo
3.
Genet Sel Evol ; 56(1): 4, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183016

RESUMEN

BACKGROUND: There can be variation between animals in how stable their genetic merit is across different environments due to genotype-by-environment (G×E) interactions. This variation could be used in breeding programs to select robust genotypes that combine high overall performance with stable genetic ranking across environments. There have been few attempts to validate breeding values for robustness in livestock, although this is a necessary step towards their implementation in selection decisions. The objective of this study was to validate breeding values for the robustness of body weight across different growth environments that were estimated using reaction norm models in sheep data. RESULTS: Using threefold cross-validation for the progeny of 337 sires, the average correlation between single-step breeding values for the reaction norm slope and the realised robustness of progeny across different growth environments was 0.21. The correlation between breeding values for the reaction slope estimated independently in two different datasets linked by common sires was close to the expected correlation based on theory. CONCLUSIONS: Slope estimated breeding values (EBV) obtained using reaction norm models were predictive of the phenotypic robustness of progeny across different environments and were consistent for sires with progeny in two different datasets. Selection based on reaction norm EBV could be used to increase the robustness of a population to environmental variation.


Asunto(s)
Ganado , Animales , Ovinos/genética , Australia , Peso Corporal , Genotipo , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA