RESUMEN
BACKGROUND: The first documented human leptospirosis cases in the U.S. Virgin Islands (USVI) occurred following 2017 Hurricanes Irma and Maria. We conducted a representative serosurvey in USVI to estimate the seroprevalence and distribution of human leptospirosis and evaluate local risk factors associated with seropositivity. METHODOLOGY/PRINCIPAL FINDINGS: A stratified, two-stage cluster sampling design was used and consisted of three island strata and random selection of census blocks and then households. All eligible members of selected households were invited to participate (≥5 years old, resided in USVI ≥6 months and ≥6 months/year). Household and individual-level questionnaires were completed, and serum collected from each enrolled individual. Microscopic agglutination test serology was conducted, and bivariate and logistic regression analyses completed to identify risk factors for seropositivity. In March 2019, 1,161 individuals were enrolled from 918 households in St. Croix, St. Thomas, and St. John. The territory-wide weighted seroprevalence was 4.0% (95% CI:2.3-5.7). Characteristics/exposures independently associated with seropositivity using logistic regression included contact with cows (OR: 39.5; 95% CI: 9.0-172.7), seeing rodents/rodent evidence or contact with rodents (OR: 2.6; 95% CI: 1.1-5.9), and increasing age (OR: 1.02; 95% CI: 1.002-1.04); full or partial Caucasian/White race was negatively correlated with seropositivity (OR: 0.02, 95% CI: 0.04-0.7). Bivariate analysis showed self-reported jaundice since the 2017 hurricanes (pRR: 5.7; 95% CI: 1.0-33.4) was associated with seropositivity and using a cover/lid on cisterns/rainwater collection containers (pRR: 0.3; 95% CI: 0.08-0.8) was protective against seropositivity. CONCLUSIONS/SIGNIFICANCE: Leptospirosis seropositivity of 4% across USVI demonstrates an important human disease that was previously unrecognized and emphasizes the importance of continued leptospirosis surveillance and investigation. Local risk factors identified may help guide future human and animal leptospirosis studies in USVI, strengthen leptospirosis public health surveillance and treatment timeliness, and inform targeted education, prevention, and control efforts.
Asunto(s)
Leptospirosis , Femenino , Humanos , Bovinos , Animales , Preescolar , Estudios Seroepidemiológicos , Islas Virgenes de los Estados Unidos/epidemiología , Leptospirosis/epidemiología , Pruebas de Aglutinación , Factores de RiesgoRESUMEN
OBJECTIVE: Following Hurricanes Irma and Maria, the first case of human leptospirosis ever identified in the US Virgin Islands (USVI) was reported to the Virgin Islands Department of Health. Leptospirosis is a potentially fatal bacterial disease caused by Leptospira species found in animal urine and urine-contaminated water and soil. Outbreaks can occur following extreme weather events. METHOD: Additional cases of leptospirosis were identified in the 2.5 months post-hurricanes by reviewing emergency department (ED) records from territorial hospitals for patients demonstrating leptospirosis-consistent symptoms, testing symptomatic patients previously enrolled in the USVI arbovirus surveillance system (VIASS), and adding leptospirosis testing prospectively to VIASS. Available patient sera underwent local rapid diagnostic testing for anti-Leptospira IgM followed by confirmatory microscopic agglutination testing at the US Centers for Disease Control and Prevention. Water was collected from cisterns with epidemiologic links to confirmed cases and tested by real-time PCR (qPCR) for pathogenic Leptospira spp. RESULTS: Sixteen retrospectively identified symptomatic patients were enrolled in VIASS; 15 with available samples tested negative. Based on review of 5226 ED charts, 6 patients were further investigated; of these, 5 were tested of which 1 was positive. Prospective leptospirosis surveillance tested 57 additional patients; of these, 1 was positive. Water from 1 of 5 tested cisterns was found positive by qPCR. CONCLUSIONS: This investigation documents the first 3 cases of leptospirosis reported in the USVI and demonstrates how VIASS successfully was adapted to establish leptospirosis surveillance. Contaminated cistern water was identified as a potential source for Leptospira spp. transmission, highlighting the need for additional post-hurricane remediation and disinfection guidance.
RESUMEN
Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.
Asunto(s)
Tormentas Ciclónicas , Desastres , Laboratorios/organización & administración , Práctica de Salud Pública , Centers for Disease Control and Prevention, U.S. , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/epidemiología , Pruebas Diagnósticas de Rutina , Humanos , Vigilancia de la Población , Puerto Rico/epidemiología , Estados UnidosRESUMEN
Melioidosis is a bacterial infection caused by Burkholderia pseudomallei, a gram-negative saprophytic bacillus. Cases occur sporadically in the Americas with an increasing number of cases observed among people with no travel history to endemic countries. To better understand the incidence of the disease in the Americas, we reviewed the literature, including unpublished cases reported to the Centers for Disease Control and Prevention. Of 120 identified human cases, occurring between 1947 and June 2015, 95 cases (79%) were likely acquired in the Americas; the mortality rate was 39%. Burkholderia pseudomallei appears to be widespread in South, Central, and North America.
Asunto(s)
Melioidosis/epidemiología , Burkholderia pseudomallei , Región del Caribe/epidemiología , América Central/epidemiología , Humanos , Incidencia , América del Norte/epidemiología , América del Sur/epidemiologíaRESUMEN
PROBLEM/CONDITION: Melioidosis is an infection caused by the Gram-negative bacillus Burkholderia pseudomallei, which is naturally found in water and soil in areas endemic for melioidosis. Infection can be severe and sometimes fatal. The federal select agent program designates B. pseudomallei as a Tier 1 overlap select agent, which can affect both humans and animals. Identification of B. pseudomallei and all occupational exposures must be reported to the Federal Select Agent Program immediately (i.e., within 24 hours), whereas states are not required to notify CDC's Bacterial Special Pathogens Branch (BSPB) of human infections. PERIOD COVERED: 2008-2013. DESCRIPTION OF SYSTEM: The passive surveillance system includes reports of suspected (human and animal) melioidosis cases and reports of incidents of possible occupational exposures. Reporting of suspected cases to BSPB is voluntary. BSPB receives reports of occupational exposure in the context of a request for technical consultation (so that the system does not include the full complement of the mandatory and confidential reporting to the Federal Select Agent Program). Reporting sources include state health departments, medical facilities, microbiologic laboratories, or research facilities. Melioidosis cases are classified using the standard case definition adopted by the Council of State and Territorial Epidemiologists in 2011. In follow up to reports of occupational exposures, CDC often provides technical assistance to state health departments to identify all persons with possible exposures, define level of risk, and provide recommendations for postexposure prophylaxis and health monitoring of exposed persons. RESULTS: During 2008-2013, BSPB provided technical assistance to 20 U.S. states and Puerto Rico involving 37 confirmed cases of melioidosis (34 human cases and three animal cases). Among those with documented travel history, the majority of reported cases (64%) occurred among persons with a documented travel history to areas endemic for melioidosis. Two persons did not report any travel outside of the United States. Separately, six incidents of possible occupational exposure involving research activities also were reported to BSPB, for which two incidents involved occupational exposures and no human infections occurred. Technical assistance was not required for these incidents because of risk-level (low or none) and appropriate onsite occupational safety response. Of the 261 persons at risk for occupational exposure to B. pseudomallei while performing laboratory diagnostics, 43 (16%) persons had high-risk exposures, 130 (50%) persons had low-risk exposures, and 88 (34%) persons were classified as having undetermined or unknown risk. INTERPRETATION: A small number of U.S. cases of melioidosis have been reported among persons with no travel history outside of the United States, whereas the majority of cases have occurred in persons with a travel history to areas endemic for melioidosis. If the number of travelers continues to increase in countries where the disease is endemic, the likelihood of identifying imported melioidosis cases in the United States might also increase. PUBLIC HEALTH ACTIONS: Reporting of melioidosis cases can improve the ability to monitor the incidence and prevalence of the disease in the United States. To improve prevention and control of melioidosis, CDC recommends that (1) physicians consider melioidosis in the differential diagnosis of patients with acute febrile illnesses, risk factors for melioidosis, and compatible travel or exposure history; (2) personnel at risk for occupational exposure (e.g., laboratory workers or researchers) follow proper safety practices, which includes using appropriate personal protective equipment when working with unknown pathogens; and (3) all possible occupational exposures to B. pseudomallei be reported voluntarily to BSPB.
Asunto(s)
Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/epidemiología , Melioidosis/veterinaria , Enfermedades Profesionales/epidemiología , Exposición Profesional/estadística & datos numéricos , Vigilancia de la Población , Investigadores , Adulto , Anciano , Anciano de 80 o más Años , Animales , Centers for Disease Control and Prevention, U.S. , Niño , Femenino , Humanos , Iguanas/microbiología , Macaca/microbiología , Masculino , Persona de Mediana Edad , Exposición Profesional/efectos adversos , Puerto Rico/epidemiología , Investigadores/estadística & datos numéricos , Medición de Riesgo , Factores de Riesgo , Viaje , Estados Unidos/epidemiología , Adulto JovenRESUMEN
BACKGROUND: Melioidosis results from infection with Burkholderia pseudomallei and is associated with case-fatality rates up to 40%. Early diagnosis and treatment with appropriate antimicrobials can improve survival rates. Fatal and nonfatal melioidosis cases were identified in Puerto Rico in 2010 and 2012, respectively, which prompted contact investigations to identify risk factors for infection and evaluate endemicity. METHODS: Questionnaires were administered and serum specimens were collected from coworkers, neighborhood contacts within 250 m of both patients' residences, and injection drug user (IDU) contacts of the 2012 patient. Serum specimens were tested for evidence of prior exposure to B. pseudomallei by indirect hemagglutination assay. Neighborhood seropositivity results guided soil sampling to isolate B. pseudomallei. RESULTS: Serum specimens were collected from contacts of the 2010 (n = 51) and 2012 (n = 60) patients, respectively. No coworkers had detectable anti-B. pseudomallei antibody, whereas seropositive results among neighborhood contacts was 5% (n = 2) for the 2010 patient and 23% (n = 12) for the 2012 patient, as well as 2 of 3 IDU contacts for the 2012 case. Factors significantly associated with seropositivity were having skin wounds, sores, or ulcers (odds ratio [OR], 4.6; 95% confidence interval [CI], 1.2-17.8) and IDU (OR, 18.0; 95% CI, 1.6-194.0). Burkholderia pseudomallei was isolated from soil collected in the neighborhood of the 2012 patient. CONCLUSIONS: Taken together, isolation of B. pseudomallei from a soil sample and high seropositivity among patient contacts suggest at least regional endemicity of melioidosis in Puerto Rico. Increased awareness of melioidosis is needed to enable early case identification and early initiation of appropriate antimicrobial therapy.