Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 120(9): 2538-43, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26848611

RESUMEN

A single molecule often exhibits a largely different material character from a bulk matter. Although a perfluoroalkyl (Rf) compound is a representative one, many interests have mostly been devoted to the bulk character only thus far, leaving the single molecular character unclear. Recently, a new theoretical framework, stratified dipole-arrays (SDA) theory, has appeared for comprehensive understanding of Rf compounds in terms of both single and bulk systems. On this theory, a mechanically stretched polytetrafluoroethylene (PTFE) is expected to exhibit a single-molecular character having dipole-driven properties, which should attract molecular water. In the present study, a stretched PTFE tape is revealed to attract molecular water (not water droplet) in fact, and the adsorbed water molecules are highly restricted in motion by the dipole-dipole interaction studied by using (1)H NMR, which agrees with the prediction by the SDA theory.

2.
J Phys Chem B ; 119(25): 8048-53, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26010773

RESUMEN

Water involved in a polyelectrolyte membrane of Nafion has recently been revealed to comprise three distinctive molecular species with respect to molecular motion correlated with the hydrogen bonding structure by using (1)H NMR, infrared, and mass spectrometries. The three species are assigned to the condensed water, hydration water, and strongly bounded water on the sulfonic acid group. In the present study, on the contrary to an expectation on this schematic, even the condensed water is found unfrozen when the membrane is cooled down to -50 °C, and a freezing begins when it is cooled down to -60 °C or lower. Two-thirds of the condensed water remains unfrozen even at -80 °C, which is attributed to the effect of nanospace where the water molecules are too short to construct the ice-like structure. The reduction of rotational motion of water is, on the other hand, commonly found for all the water species revealed via the calculation of the activation energies.

3.
Anal Chem ; 85(15): 7581-7, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23845052

RESUMEN

(1)H NMR spectroscopy is employed to reveal the hydration process of a Nafion membrane by measuring both the chemical shift and the spin-lattice relaxation time. In a former study, the hydration process was suggested to comprise two steps: the molecular adsorption of water on the sulfonic acid groups and wetting with liquid water. The present study has revealed the first step can further be divided into two steps. By introducing a new experimental technique, the quantitatively reliable NMR measurements of protons ((1)H) of water involved in the polymer membrane are realized. In addition, a new analytical procedure is developed using a reciprocal concentration on a saturation-adsorption model, and the hydration is clearly revealed to have three individual steps. Both the chemical shift and the relaxation time plots against the reciprocal concentration exhibit three linear parts with apparently different slopes. Of great interest is that the initial hydration is divided into two stages: the first hydration is a very strong adsorption of water probably on the hydroxyl group of the sulfonic acid group, and the second one is a relatively weak adsorption on another site of the sulfonic acid group. The third hydration is readily assigned to excess bulk (liquid-like) water as expected. These adsorption processes are readily correlated with the rotational motion of water by converting the spin-lattice relaxation time to the rotational correlation time.

4.
J Phys Chem A ; 114(10): 3510-5, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20166690

RESUMEN

The equilibrium for the reversible decomposition of formic acid into carbon dioxide and hydrogen is studied in the ionic liquid (IL) 1,3-dipropyl-2-methylimidazolium formate. The equilibrium is strongly favored to the formic acid side because of the strong solvation of formic acid in the IL through the strong Coulombic solute-solvent interactions. The comparison of the equilibrium constants in the IL and water has shown that the pressures required to transform hydrogen and carbon dioxide into formic acid can be reduced by a factor of approximately 100 by using the IL instead of water. The hydrogen transformation in such mild conditions can be a chemical basis for the hydrogen storage and transportation using formic acid.

5.
Anal Chem ; 81(1): 400-7, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19117465

RESUMEN

A sensitive in situ NMR spectroscopic method for detecting acids contaminating ionic liquids (ILs) has been developed. The chemical shift and the spectral width of water added to ILs were used as indicators to measure the impurity acid level. Owing to the high resolution power of NMR, the detection limit is below the level of 10(-3) mol kg(-1). A new method is applicable to a number of commonly used ILs such as the imidazolium- and ammonium-based ILs except for those composed of acidic cations or anions. The method was utilized to monitor the purification efficiency in the recrystallization of a typical hydrophilic IL, 1-butyl-3-methylimidazolium methanesulfonate from acetone. It was demonstrated that impurity acids can be almost perfectly removed by single or double recrystallization.

6.
J Phys Chem B ; 112(9): 2622-8, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-18257564

RESUMEN

The locational and orientational structure and the dynamics of cholesterol in the bilayer membrane were studied by using the solution-state NMR. The intermolecular nuclear Overhauser effect (NOE) was analyzed for large unilamellar vesicles (100 nm in diameter) composed of dimyristoylphosphatidylcholine (DMPC) and cholesterol at cholesterol concentrations of 9-33 mol %. The DMPC headgroups show (1)H-{(1)H}-NOEs with the methyl groups at the hydrophobic terminals of both cholesterol and DMPC, illustrating the significant fluctuation of the bilayer membrane in the vertical (bilayer normal) direction. Cholesterol was found to keep the hydroxyl (OH) group toward the outer water pool on the basis of the following observations: (1) the cross correlation between the DMPC headgroup and the cholesterol terminal methyl group is weaker than those between the DMPC headgroups and (2) the methyl group at the hydrophobic terminal of cholesterol shows strong correlation with the terminal group of the DMPC chain portion. The OH group plays a crucial role in orienting cholesterol with its OH group outward, since cholestane, which has a molecular structure similar to that of cholesterol except for the absence of the OH group, was found to have no orientational preference in the bilayer membrane. The dynamic slowdown at high cholesterol concentrations is demonstrated on the basis of the correlation times for NOE as well as the broadening of the proton linewidths.


Asunto(s)
Colesterol/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Fosfolípidos/química , Liposomas Unilamelares/química , Agua/química , Colestanos/química , Colesterol/análogos & derivados , Dimiristoilfosfatidilcolina/química , Interacciones Hidrofóbicas e Hidrofílicas , Fluidez de la Membrana
7.
J Chem Phys ; 127(10): 104506, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17867760

RESUMEN

The rotational correlation time (tau(2R)) is determined for D(2)O (polar) and C(6)D(6) (apolar) in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF(6)]) by measuring (2)H (D) nuclear magnetic resonance spin-lattice relaxation time (T(1)) in the temperature range from -20 to 110 degrees C. The tau(2R) ratio of water to benzene (tau(WB)) was used as a measure of solute-solvent attraction. tau(WB) is 0.73 and 0.52 in [bmim][Cl] and [bmim][PF(6)], respectively, whereas the molecular volume ratio is as small as 0.11. The slowdown of the water dynamics compared to the benzene dynamics in ionic liquids is interpreted by the Coulombic attractive interaction between the polar water molecule and the anion. As for the anion effect, the rotational dynamics of water solvated by Cl(-) is slower than that solvated by PF(6) (-), whereas the rotational dynamics of benzene is similar in the two ionic liquids. This is interpreted as an indication of the stronger solvation by the anion with a larger surface charge density. The slowdown of the water dynamics via Coulombic solvation is actually significant only at water concentrations lower than approximately 9 mol dm(-3) at room temperature, and it is indistinguishable at temperatures above approximately 100 degrees C. The quadrupolar coupling constants determined for D(2)O and C(6)D(6) in the ionic liquids were smaller by a factor of 2-3 than those in the pure liquid state.

8.
J Phys Chem A ; 111(4): 541-3, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17249739

RESUMEN

The H/D exchange reaction and the rotational dynamics of heavy water (D2O) are studied at 50 degrees C in the ionic liquid, 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), in the [D2O] range of 3-55 M. The initial H/D exchange rates are observed as 1.0 x 10(-7), 4.5 x 10(-6), 1.0 x 10(-5), 4.1 x 10(-5), 1.1 x 10(-4), and 3.7 x 10(-4) s(-1), respectively, at [D2O] of 2.8, 7.1, 8.1, 11, 15, and 25 M. The rate is very slow and less than 10(-5) s(-1) at [D2O] below approximately 7 M. It steeply increases to the order of 10(-4)s(-1) for 7 M < [D2O] < 10 M, and linearly increases with [D2O] in the more water-rich region. The intercept of the linear region at [D2O] = approximately 9 M is interpreted by considering that each chloride anion deactivates 1.6 equiv water molecules due to the strong solvation. Correspondingly, the rotational correlation time of D2O at [D2O] < 7 M is 1 order of magnitude larger than that in water-rich conditions.

9.
J Phys Chem A ; 110(38): 11082-90, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16986841

RESUMEN

Kinetics and equilibrium are studied on the hydrothermal decarbonylation and decarboxylation of formic acid, the intermediate of the water-gas-shift (WGS) reaction, in hot water at temperatures of 170-330 degrees C, to understand and control the hydrothermal WGS reaction. (1)H and (13)C NMR spectroscopy is applied to analyze as a function of time the quenched reaction mixtures in both the liquid and gas phases. Only the decarbonylation is catalyzed by HCl, and the reaction is first-order with respect to both [H(+)] and [HCOOH]. Consequently, the reaction without HCl is first and a half (1.5) order due to the unsuppressed ionization of formic acid. The HCl-accelerated decarbonylation path can thus be separated in time from the decarboxylation. The rate and equilibrium constants for the decarbonylation are determined separately by using the Henry constant (gas solubility data) for carbon monoxide in hot water. The rate constant for the decarbonylation is 1.5 x 10(-5), 2.0 x 10(-4), 3.7 x 10(-3), and 6.3 x 10(-2) mol(-1) kg s(-1), respectively, at 170, 200, 240, and 280 degrees C on the liquid branch of the saturation curve. The Arrhenius plot of the decarbonylation is linear and gives the activation energy as 146 +/- 3 kJ mol(-1). The equilibrium constant K(CO) = [CO]/[HCOOH] is 0.15, 0.33, 0.80, and 4.2, respectively, at 170, 200, 240, and 280 degrees C. The van't Hoff plot results in the enthalpy change of DeltaH = 58 +/- 6 kJ mol(-1). The decarboxylation rate is also measured at 240-330 degrees C in both acidic and basic conditions. The rate is weakly dependent on the solution pH and is of the order of 10(-4) mol kg(-1) s(-1) at 330 degrees C. Furthermore, the equilibrium constant K(CO2) = [CO(2)][H(2)]/[HCOOH] is estimated to be 1.0 x10(2) mol kg(-1) at 330 degrees C.

10.
J Phys Chem B ; 110(31): 15205-11, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16884236

RESUMEN

Self-diffusion coefficients (D) are measured for normal (nondeuterated) and deuterated cholesterol-d(6) (C26 and C27 methyl groups deuterated) in 1-octanol, chloroform, and cyclohexane at concentrations of 1-700 mM by varying the impurity water concentration (>2 mM) and temperature (30-50 degrees C). The pulsed field gradient spin-echo (PGSE) (1)H and (2)H NMR were used, respectively, at 600 and 92 MHz. At 30 degrees C, the hydrodynamic radius (R) obtained at 20 mM from the D value and solvent viscosity is 5.09, 7.07, and 6.17 A, respectively, in 1-octanol, chloroform, and cyclohexane when the impurity water is negligible. The R value in 1-octanol is the smallest and comparable with the average length of the molecular axes for the cholesterol molecule. In 1-octanol, R is invariant against the concentration variation, whereas in chloroform, R is larger and increases almost linearly with cholesterol concentration. At the highest concentration, 700 mM, the R in chloroform is 13.5 and 16.7 A, respectively, when the impurity water is at negligible and saturated concentrations. The R value larger than that in hydrogen-bonding 1-octanol indicates that cholesterol forms an aggregate through hydrogen bonding. The aggregate structure is confirmed by comparing NOESY spectra in chloroform and 1-octanol. The NOESY analysis reveals the presence of one extra cross peak (C4-C19) in chloroform compared to 1-octanol. Because the carbon atoms related to the cross peak are close to the hydroxyl group (C3-OH), cholesterol molecules are considered to be not piled but are found to be OH-centered in the aggregate. This is supported also by larger rotational hydrodynamic radii measured on cholesterol deuterated at positions C2, C3, C4, and C6. This shows that the aggregate formation is driven by the hydrogen-bonding between cholesterol molecules.


Asunto(s)
1-Octanol/química , Cloroformo/química , Colesterol/química , Ciclohexanos/química , Espectroscopía de Resonancia Magnética/métodos , Termodinámica , Difusión , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/normas , Conformación Molecular , Estándares de Referencia , Sensibilidad y Especificidad , Solubilidad , Solventes/química
11.
J Phys Chem B ; 110(25): 12682-8, 2006 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-16800602

RESUMEN

We have used microwave dielectric relaxation spectroscopy to study the picosecond dynamics of five low-viscosity, highly conductive room temperature ionic liquids based on 1-alkyl-3-methylimidazolium cations paired with the bis((trifluoromethyl)sulfonyl)imide anion. Up to 20 GHz the dielectric response is bimodal. The longest relaxation component at the time scale of several 100 ps reveals strongly nonexponential dynamics and correlates with the viscosity in a manner consistent with hydrodynamic predictions for the diffusive reorientation of dipolar ions. Methyl substitution at the C2 position destroys this correlation. The time constants of the weak second process at the 20 ps time scale are practically the same for each salt. This intermediate process seems to correlate with similar modes in optical Kerr effect spectra, but its physical origin is unclear. The missing high-frequency portion of the spectra indicates relaxation beyond the upper cutoff frequency of 20 GHz, presumably due to subpicosecond translational and librational displacements of ions in the cage of their counterions. There is no evidence for orientational relaxation of long-lived ion pairs.

12.
J Chem Phys ; 123(16): 164506, 2005 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-16268711

RESUMEN

A high-resolution nuclear-magnetic-resonance probe (500 MHz for 1H) has been developed for multinuclear pulsed-field-gradient spin-echo diffusion measurements at high temperatures up to 400 degrees C. The convection effect on the self-diffusion measurement is minimized by achieving the homogeneous temperature distributions of +/-1 and +/-2 degrees C, respectively, at 250 and 400 degrees C. The high temperature homogeneity is attained by using the solid-state heating system composed of a ceramic (AlN) with high thermal conductivity comparable with that of metal aluminium. The self-diffusion coefficients D for light (1H2O) and heavy (2H2O) water are distinguishably measured at subcritical temperatures of 30-350 degrees C with intervals of 10-25 degrees C on the liquid-vapor coexisting curve and at a supercritical temperature of 400 degrees C as a function of water density between 0.071 and 0.251 gcm3. The D value obtained for 1H2O is 10%-20% smaller than those previously reported because of the absence of the convection effect. At 400 degrees C, the D value for 1H2O is increased by a factor of 3.7 as the water density is reduced from 0.251 to 0.071 gcm3. The isotope ratio D(1H2O)D(2H2O) decreases from 1.23 to approximately 1.0 as the temperature increases from 30 to 400 degrees C. The linear hydrodynamic relationship between the self-diffusion coefficient divided by the temperature and the inverse viscosity does not hold. The effective hydrodynamic radius of water is not constant but increases with the temperature elevation in subcritical water.

13.
J Phys Chem A ; 109(29): 6610-9, 2005 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16834010

RESUMEN

Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 degrees C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm(-3)). Reactions unveiled are the following: (i) the self-disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes, (ii) the cross-disproportionation forming methanol and carbonic acid, a redox reaction between formaldehyde and formic acid, and (iii) the acid-catalyzed C-C bond formation producing glycolic acid (HOCH2COOH) as a precursor of the simplest amino acid, glycine. Reaction iii is a hydrothermally induced chemical evolution step from C1 aldehydes, formaldehyde and formic acid. Disproportionations i and ii are found to proceed even without base catalysts unlike the classical Cannizzaro reaction. Acid catalyzes the self-disproportionation (i) and the C-C bond formation (iii), but retards the cross-disproportionation (ii). The rate constants of noncatalyzed and acid/base-catalyzed paths for reactions i, ii, and iii are given additively as 2 x 10(-4) + (2 x 10(-3))[H+], 10(-4) + 10(3)[OH-], and (2 x 10(-3))[H+] M(-1) s(-1), respectively; the concentrations of proton [H+] and hydroxide ion [OH-] are expressed in M. The rate constant of the noncatalytic (neutral) cross-disproportionation is 1 order of magnitude larger than that of the self-disproportionation. The reaction pathways are controlled on the basis of the kinetic analysis to make the glycolic acid and methanol productions dominant by tuning the concentrations of formaldehyde, formic acid, and HCl. The conversion to glycolic acid reaches approximately 90% when formaldehyde, HCl, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde to methanol reaches approximately 80% when formic acid is added in excess to formaldehyde.

14.
J Phys Chem B ; 109(36): 17028-30, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16853170

RESUMEN

In a pilot study of the dielectric constant of room-temperature ionic liquids, we use dielectric spectroscopy in the megahertz/gigahertz regime to determine the complex dielectric function of five 1-alkyl-3-methylimidazolium salts, from which the static dielectric constant epsilon is obtained by zero-frequency extrapolation. The results classify the salts as moderately polar solvents. The observed epsilon-values at 298.15 K fall between 15.2 and 8.8, and epsilon decreases with increasing chain length of the alkyl residue of the cation. The anion sequence is trifluoromethylsulfonate > tetrafluoroborate approximately tetrafluorophosphate. The results indicate markedly lower polarities than found by spectroscopy with polarity-sensitive solvatochromic dyes.

15.
J Chem Phys ; 121(2): 960-9, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15260628

RESUMEN

The site-selective H/D exchange reaction of phenol in sub- and supercritical water is studied without added catalysts. In subcritical water in equilibrium with steam at 210-240 degrees C, the H/D exchange proceeds both at the ortho and para sites in the phenyl ring, with no exchange observed at the meta site. The pseudo-first-order rate constants are of the order of 10(-4) s(-1); 50% larger for the ortho than for the para site. In supercritical water, the exchange is observed also at the meta site with the rate constant in the range of 10(-6)-10(-4) s(-1). As the bulk density decreases, the exchange slows down and the site selectivity toward the ortho is enhanced. The enhancement is due to the phenol-water interaction preference at the atomic resolution. The site selectivity toward the ortho is further enhanced when the reaction is carried out in benzene/water solution. Using such selectivity control and the reversible nature of the hydrothermal deuteration/protonation process, it is feasible to synthesize phenyl compounds that are deuterated at any topological combination of ortho, meta, and para sites.

16.
Phys Rev Lett ; 93(24): 248101, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15697863

RESUMEN

Self-diffusion rates of lipids and trapped bisphenol A (BPA) are determined in various sizes of confined but fluid membranes by high-field-gradient NMR at 600 MHz. Micelles and vesicles of 3- to 400-nm diameters are used as model membranes to get an insight into the molecular diffusion in such soft environments. The slowdown of BPA and lipid motions is leveled off in 100- and 400-nm vesicles, although the hydrodynamic continuum model gives the aggregate motion slowed inversely to the aggregate size. Instead, the limited motion is related to the intra-membrane fluidity.


Asunto(s)
Lípidos de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Fenoles/química , Compuestos de Bencidrilo , Difusión , Fluidez de la Membrana , Lípidos de la Membrana/metabolismo , Membranas Artificiales , Micelas , Fenoles/farmacocinética , Fosfatidilcolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA