Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829379

RESUMEN

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Larva , ARN Ribosómico 16S , Tephritidae , Avispas , Animales , Tephritidae/microbiología , Tephritidae/parasitología , Avispas/microbiología , Avispas/fisiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Larva/microbiología , Larva/parasitología , Larva/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Hongos/genética , Hongos/fisiología , Interacciones Huésped-Parásitos , Microbiota , Disbiosis/microbiología , Disbiosis/parasitología
2.
mBio ; 15(1): e0219223, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38063396

RESUMEN

IMPORTANCE: Microsporidia MB is a symbiont with a strong malaria transmission-blocking phenotype in Anopheles arabiensis. It spreads in mosquito populations through mother-to-offspring and sexual transmission. The ability of Microsporidia MB to block Plasmodium transmission, together with its ability to spread within Anopheles populations and its avirulence to the host, makes it a very attractive candidate for developing a key strategy to stop malaria transmissions. Here, we report tissue tropism and localization patterns of Microsporidia MB, which are relevant to its transmission. We find that Microsporidia MB accumulates in Anopheles arabiensis tissues, linked to its sexual and vertical transmission. Its prevalence and intensity in the tissues over the mosquito life cycle suggest adaptation to maximize transmission and avirulence in Anopheles arabiensis. These findings provide the foundation for understanding the factors that may affect Microsporidia MB transmission efficiency. This will contribute to the development of strategies to maximize Microsporidia MB transmission to establish and sustain a high prevalence of the symbiont in Anopheles mosquito populations for malaria transmission blocking.


Asunto(s)
Anopheles , Malaria , Microsporidios , Animales , Humanos , Microsporidios/genética , Células Germinativas , Tropismo
3.
PLoS One ; 15(6): e0235348, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32589643

RESUMEN

The Asian citrus psyllid (Diaphorina citri) is a key pest of Citrus spp. worldwide, as it acts as a vector for "Candidatus Liberibacter asiaticus (Las)", the bacterial pathogen associated with the destructive Huanglongbing (HLB) disease. Recent detection of D. citri in Africa and reports of Las-associated HLB in Ethiopia suggest that the citrus industry on the continent is under imminent threat. Endosymbionts and gut bacteria play key roles in the biology of arthropods, especially with regards to vector-pathogen interactions and resistance to antibiotics. Thus, we aim to profile the bacterial genera and to identify antibiotic resistance genes within the microbiome of different populations worldwide of D. citri. The metagenome of D. citri was sequenced using the Oxford Nanopore full-length 16S metagenomics protocol, and the "What's in my pot" (WIMP) analysis pipeline. Microbial diversity within and between D. citri populations was assessed, and antibiotic resistance genes were identified using the WIMP-ARMA workflow. The most abundant genera were key endosymbionts of D. citri ("Candidatus Carsonella", "Candidatus Profftella", and Wolbachia). The Shannon diversity index showed that D. citri from Tanzania had the highest diversity of bacterial genera (1.92), and D. citri from China had the lowest (1.34). The Bray-Curtis dissimilarity showed that China and Kenya represented the most diverged populations, while the populations from Kenya and Tanzania were the least diverged. The WIMP-ARMA analyses generated 48 CARD genes from 13 bacterial species in each of the populations. Spectinomycin resistance genes were the most frequently found, with an average of 65.98% in all the populations. These findings add to the knowledge on the diversity of the African D. citri populations and the probable introduction source of the psyllid in these African countries.


Asunto(s)
Biodiversidad , Hemípteros/microbiología , Microbiota , Filogenia , Animales , China , Farmacorresistencia Microbiana/genética , Insectos Vectores/microbiología , Kenia , Microbiota/efectos de los fármacos , Microbiota/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia , Simbiosis , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA