Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Elife ; 132024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259200

RESUMEN

The molecular mechanisms leading to saliva secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of salivary gland immune cell infiltration and glandular hypofunction. SS-like disease was induced by treatment with DMXAA, a small molecule agonist of murine STING. We have previously shown that the extent of salivary secretion is correlated with the magnitude of intracellular Ca2+ signals (Takano et al., 2021). Contrary to our expectations, despite a significant reduction in fluid secretion, neural stimulation resulted in enhanced Ca2+ signals with altered spatiotemporal characteristics in vivo. Muscarinic stimulation resulted in reduced activation of the Ca2+-activated Cl- channel, TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. Super-resolution microscopy revealed a disruption in the colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels with TMEM16a, and channel activation was reduced when intracellular Ca2+ buffering was increased. These data indicate altered local peripheral coupling between the channels. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics. Disrupted mitochondrial morphology and reduced oxygen consumption rate were observed in DMXAA-treated animals. In summary, early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction.


Asunto(s)
Anoctamina-1 , Señalización del Calcio , Modelos Animales de Enfermedad , Mitocondrias , Síndrome de Sjögren , Animales , Síndrome de Sjögren/metabolismo , Ratones , Mitocondrias/metabolismo , Anoctamina-1/metabolismo , Calcio/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Femenino , Ratones Endogámicos C57BL
2.
bioRxiv ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39211071

RESUMEN

A wide variety of factors influence inositol 1,4,5-trisphosphate (IP 3 ) receptor (IP 3 R) activity resulting in modulation of intracellular Ca 2+ release. This regulation is thought to define the spatio-temporal patterns of Ca 2+ signals necessary for the appropriate activation of downstream effectors. The binding of both IP 3 and Ca 2+ are obligatory for IP 3 R channel opening, however, Ca 2+ regulates IP 3 R activity in a biphasic manner. Mutational studies have revealed that Ca 2+ binding to a high-affinity pocket formed by the ARM3 domain and linker domain promotes IP 3 R channel opening without altering the Ca 2+ dependency for channel inactivation. These data suggest a distinct low-affinity Ca 2+ binding site is responsible for the reduction in IP 3 R activity at higher [Ca 2+ ]. We determined the consequences of mutating a cluster of acidic residues in the ARM2 and central linker domain reported to coordinate Ca 2+ in cryo-EM structures of the IP 3 R type 3. This site is termed the "CD Ca 2+ binding site" and is well-conserved in all IP 3 R sub-types. We show that the CD site Ca 2+ binding mutants where the negatively charged glutamic acid residues are mutated to alanine exhibited enhanced sensitivity to IP 3 -generating agonists. Ca 2+ binding mutants displayed spontaneous elemental Ca 2+ events (Ca 2+ puffs) and the number of IP 3 -induced Ca 2+ puffs was significantly augmented in cells stably expressing Ca 2+ binding site mutants. When measured with "on-nucleus" patch clamp, the inhibitory effect of high [Ca 2+ ] on single channel-open probability (P o ) was reduced in mutant channels and this effect was dependent on [ATP]. These results indicate that Ca 2+ binding to the putative CD Ca 2+ inhibitory site facilitates the reduction in IP 3 R channel activation when cytosolic [ATP] is reduced and suggest that at higher [ATP], additional Ca 2+ binding motifs may contribute to the biphasic regulation of IP 3 -induced Ca 2+ release.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119796, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038610

RESUMEN

Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme interacting with the inositol 1,4,5-trisphosphate receptor (IP3R). This interaction suppresses IP3R-mediated cytosolic [Ca2+] rises. As PKM2 exists in monomeric, dimeric and tetrameric forms displaying different properties including catalytic activity, we investigated the molecular determinants of PKM2 enabling its interaction with IP3Rs. Treatment of HeLa cells with TEPP-46, a compound stabilizing the tetrameric form of PKM2, increased both its catalytic activity and the suppression of IP3R-mediated Ca2+ signals. Consistently, in PKM2 knock-out HeLa cells, PKM2C424L, a tetrameric, highly active PKM2 mutant, but not inactive PKM2K270M or the less active PKM2K305Q, suppressed IP3R-mediated Ca2+ release. Surprisingly, however, in vitro assays did not reveal a direct interaction between purified PKM2 and either the purified Fragment 5 of IP3R1 (a.a. 1932-2216) or the therein located D5SD peptide (a.a. 2078-2098 of IP3R1), the presumed interaction sites of PKM2 on the IP3R. Moreover, on-nucleus patch clamp of heterologously expressed IP3R1 in DT40 cells devoid of endogenous IP3Rs did not reveal any functional effect of purified wild-type PKM2, mutant PKM2 or PKM1 proteins. These results indicate that an additional factor mediates the regulation of the IP3R by PKM2 in cellulo. Immunoprecipitation of GRP75 using HeLa cell lysates co-precipitated IP3R1, IP3R3 and PKM2. Moreover, the D5SD peptide not only disrupted PKM2:IP3R, but also PKM2:GRP75 and GRP75:IP3R interactions. Our data therefore support a model in which catalytically active, tetrameric PKM2 suppresses Ca2+ signaling via the IP3R through a multiprotein complex involving GRP75.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato , Proteínas de la Membrana , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Señalización del Calcio , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Calcio/metabolismo , Unión Proteica , Multimerización de Proteína
4.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38562738

RESUMEN

Saliva is essential for oral health. The molecular mechanisms leading to physiological fluid secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of inflammatory immune cell infiltration within the salivary glands and glandular hypofunction. In this study, we investigated in a mouse model system, mechanisms of glandular hypofunction caused by the activation of the stimulator of interferon genes (STING) pathway. Glandular hypofunction and SS-like disease were induced by treatment with 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA), a small molecule agonist of murine STING. Contrary to our expectations, despite a significant reduction in fluid secretion in DMXAA-treated mice, in vivo imaging demonstrated that neural stimulation resulted in greatly enhanced spatially averaged cytosolic Ca2+ levels. Notably, however, the spatiotemporal characteristics of the Ca2+ signals were altered to signals that propagated throughout the entire cytoplasm as opposed to largely apically confined Ca2+ rises observed without treatment. Despite the augmented Ca2+ signals, muscarinic stimulation resulted in reduced activation of TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. However, super-resolution microscopy revealed a disruption in the intimate colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels in relation to TMEM16a. TMEM16a channel activation was also reduced when intracellular Ca2+ buffering was increased. These data are consistent with altered local coupling between the channels contributing to the reduced activation of TMEM16a. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics and secretion is an energetically expensive process. Disrupted mitochondrial morphology, a depolarized mitochondrial membrane potential, and reduced oxygen consumption rate were observed in DMXAA-treated animals compared to control animals. We report that early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction and likely the progression of SS disease.

5.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260625

RESUMEN

Sjogren's disease (SjD) is an autoimmune disease characterized by xerostomia (dry mouth), lymphocytic infiltration into salivary glands and the presence of SSA and SSB autoantibodies. Xerostomia is caused by hypofunction of the salivary glands and has been involved in the development of SjD. Saliva production is regulated by parasympathetic input into the glands initiating intracellular Ca 2+ signals that activate the store operated Ca 2+ entry (SOCE) pathway eliciting sustained Ca 2+ influx. SOCE is mediated by the STIM1 and STIM2 proteins and the ORAI1 Ca 2+ channel. However, there are no studies on the effects of lack of STIM1/2 function in salivary acini in animal models and its impact on SjD. Here we report that male and female mice lacking Stim1 and Stim2 ( Stim1/2 K14Cre ) in salivary glands showed reduced intracellular Ca 2+ levels via SOCE in parotid acini and hyposalivate upon pilocarpine stimulation. Bulk RNASeq of the parotid glands of Stim1/2 K14Cre mice showed a decrease in the expression of Stim1/2 but no other Ca 2+ associated genes mediating saliva fluid secretion. SOCE was however functionally required for the activation of the Ca 2+ activated chloride channel ANO1. Despite hyposalivation, ageing Stim1/2 K14Cre mice showed no evidence of lymphocytic infiltration in the glands or elevated levels of SSA or SSB autoantibodies in the serum, which may be linked to the downregulation of the toll-like receptor 8 ( Tlr8 ). By contrast, salivary gland biopsies of SjD patients showed increased STIM1 and TLR8 expression, and induction of SOCE in a salivary gland cell line increased the expression of TLR8 . Our data demonstrate that SOCE is an important activator of ANO1 function and saliva fluid secretion in salivary glands. They also provide a novel link between SOCE and TLR8 signaling which may explain why loss of SOCE does not result in SjD.

6.
Acta Physiol (Oxf) ; 240(3): e14086, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38240350

RESUMEN

AIM: Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca2+ -release channels with crucial roles in cell function. Current IP3 R inhibitors suffer from off-target effects and poor selectivity towards the three distinct IP3 R subtypes. We developed a novel peptide inhibitor of IP3 Rs and determined its effect on connexin-43 (Cx43) hemichannels, which are co-activated by IP3 R stimulation. METHODS: IP3RPEP6 was developed by in silico molecular docking studies and characterized by on-nucleus patch-clamp experiments of IP3 R2 channels and carbachol-induced IP3 -mediated Ca2+ responses in IP3 R1, 2 or 3 expressing cells, triple IP3 R KO cells and astrocytes. Cx43 hemichannels were studied by patch-clamp and ATP-release approaches, and by inhibition with Gap19 peptide. IP3RPEP6 interactions with IP3 Rs were verified by co-immunoprecipitation and affinity pull-down assays. RESULTS: IP3RPEP6 concentration-dependently reduced the open probability of IP3 R2 channels and competitively inhibited IP3 Rs in an IC50 order of IP3 R2 (~3.9 µM) < IP3 R3 (~4.3 µM) < IP3 R1 (~9.0 µM), without affecting Cx43 hemichannels or ryanodine receptors. IP3RPEP6 co-immunoprecipitated with IP3 R2 but not with IP3 R1; interaction with IP3 R3 varied between cell types. The IC50 of IP3RPEP6 inhibition of carbachol-induced Ca2+ responses decreased with increasing cellular Cx43 expression. Moreover, Gap19-inhibition of Cx43 hemichannels significantly reduced the amplitude of the IP3 -Ca2+ responses and strongly increased the EC50 of these responses. Finally, we identified palmitoyl-8G-IP3RPEP6 as a membrane-permeable IP3RPEP6 version allowing extracellular application of the IP3 R-inhibiting peptide. CONCLUSION: IP3RPEP6 inhibits IP3 R2/R3 at concentrations that have limited effects on IP3 R1. IP3 R activation triggers hemichannel opening, which strongly affects the amplitude and concentration-dependence of IP3 -triggered Ca2+ responses.


Asunto(s)
Conexina 43 , Péptidos , Simulación del Acoplamiento Molecular , Carbacol/farmacología , Péptidos/farmacología , Péptidos/metabolismo , Astrocitos/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(39): e2209267119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122240

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.


Asunto(s)
Calcio , Receptores de Inositol 1,4,5-Trifosfato , Canal Liberador de Calcio Receptor de Rianodina , Adenosina Trifosfato , Aminoácidos Básicos , Sitios de Unión , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
8.
Nat Commun ; 13(1): 4481, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918320

RESUMEN

Two-pore channels are endo-lysosomal cation channels with malleable selectivity filters that drive endocytic ion flux and membrane traffic. Here we show that TPC2 can differentially regulate its cation permeability when co-activated by its endogenous ligands, NAADP and PI(3,5)P2. Whereas NAADP rendered the channel Ca2+-permeable and PI(3,5)P2 rendered the channel Na+-selective, a combination of the two increased Ca2+ but not Na+ flux. Mechanistically, this was due to an increase in Ca2+ permeability independent of changes in ion selectivity. Functionally, we show that cell permeable NAADP and PI(3,5)P2 mimetics synergistically activate native TPC2 channels in live cells, globalizing cytosolic Ca2+ signals and regulating lysosomal pH and motility. Our data reveal that flux of different ions through the same pore can be independently controlled and identify TPC2 as a likely coincidence detector that optimizes lysosomal Ca2+ signaling.


Asunto(s)
Canales de Calcio , Calcio , Sesgo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Cationes/metabolismo , Lisosomas/metabolismo , NADP/metabolismo
9.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35324479

RESUMEN

As blood transitions from steady laminar flow (S-flow) in healthy arteries to disturbed flow (D-flow) in aneurysmal arteries, platelets are subjected to external forces. Biomechanical platelet activation is incompletely understood and is a potential mechanism behind antiplatelet medication resistance. Although it has been demonstrated that antiplatelet drugs suppress the growth of abdominal aortic aneurysms (AAA) in patients, we found that a certain degree of platelet reactivity persisted in spite of aspirin therapy, urging us to consider additional antiplatelet therapeutic targets. Transcriptomic profiling of platelets from patients with AAA revealed upregulation of a signal transduction pathway common to olfactory receptors, and this was explored as a mediator of AAA progression. Healthy platelets subjected to D-flow ex vivo, platelets from patients with AAA, and platelets in murine models of AAA demonstrated increased membrane olfactory receptor 2L13 (OR2L13) expression. A drug screen identified a molecule activating platelet OR2L13, which limited both biochemical and biomechanical platelet activation as well as AAA growth. This observation was further supported by selective deletion of the OR2L13 ortholog in a murine model of AAA that accelerated aortic aneurysm growth and rupture. These studies revealed that olfactory receptors regulate platelet activation in AAA and aneurysmal progression through platelet-derived mediators of aortic remodeling.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Aorta , Receptores Odorantes , Animales , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta Abdominal/genética , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Activación Plaquetaria , Inhibidores de Agregación Plaquetaria/uso terapéutico , Receptores Odorantes/genética
10.
Nat Immunol ; 23(2): 287-302, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35105987

RESUMEN

The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.


Asunto(s)
Aniones/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Linfocitos T/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Calcio/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Nucleótidos Cíclicos/metabolismo , Transducción de Señal/fisiología
11.
Cell Death Differ ; 29(4): 788-805, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34750538

RESUMEN

Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2's IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL's inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL's anti-apoptotic function.


Asunto(s)
Apoptosis , Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato , Proteína bcl-X , Calcio/metabolismo , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteína bcl-X/metabolismo
12.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314386

RESUMEN

Hyperstimulation of the cholecystokinin 1 receptor (CCK1R), a G protein-coupled receptor (GPCR), in pancreatic acinar cells is commonly used to induce pancreatitis in rodents. Human pancreatic acinar cells lack CCK1R but express cholinergic receptor muscarinic 3 (M3R), another GPCR. To test whether M3R activation is involved in pancreatitis, a mutant M3R was conditionally expressed in pancreatic acinar cells in mice. This mutant receptor loses responsiveness to its native ligand, acetylcholine, but can be activated by an inert small molecule, clozapine-N-oxide (CNO). Intracellular calcium and amylase were elicited by CNO in pancreatic acinar cells isolated from mutant M3R mice but not WT mice. Similarly, acute pancreatitis (AP) could be induced by a single injection of CNO in the transgenic mice but not WT mice. Compared with the cerulein-induced AP, CNO caused more widespread acinar cell death and inflammation. Furthermore, chronic pancreatitis developed at 4 weeks after 3 episodes of CNO-induced AP. In contrast, in mice with 3 recurrent episodes of cerulein-included AP, pancreas histology was restored in 4 weeks. Furthermore, the M3R antagonist ameliorated the severity of cerulein-induced AP in WT mice. We conclude that M3R activation can cause the pathogenesis of pancreatitis. This model may provide an alternative approach for pancreatitis research.


Asunto(s)
Células Acinares/metabolismo , Regulación de la Expresión Génica , Pancreatitis/genética , ARN/genética , Receptor Muscarínico M3/genética , Células Acinares/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes , Ratones Transgénicos , Pancreatitis/metabolismo , Pancreatitis/patología , Receptor Muscarínico M3/biosíntesis , Transducción de Señal
13.
Cell Rep ; 34(9): 108760, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657364

RESUMEN

Stromal-interaction molecules (STIM1/2) sense endoplasmic reticulum (ER) Ca2+ depletion and activate Orai channels. However, the choreography of interactions between native STIM/Orai proteins under physiological agonist stimulation is unknown. We show that the five STIM1/2 and Orai1/2/3 proteins are non-redundant and function together to ensure the graded diversity of mammalian Ca2+ signaling. Physiological Ca2+ signaling requires functional interactions between STIM1/2, Orai1/2/3, and IP3Rs, ensuring that receptor-mediated Ca2+ release is tailored to Ca2+ entry and nuclear factor of activated T cells (NFAT) activation. The N-terminal Ca2+-binding ER-luminal domains of unactivated STIM1/2 inhibit IP3R-evoked Ca2+ release. A gradual increase in agonist intensity and STIM1/2 activation relieves IP3R inhibition. Concomitantly, activated STIM1/2 C termini differentially interact with Orai1/2/3 as agonist intensity increases. Thus, coordinated and omnitemporal functions of all five STIM/Orai and IP3Rs translate the strength of agonist stimulation to precise levels of Ca2+ signaling and NFAT induction, ensuring the fidelity of complex mammalian Ca2+ signaling.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI2/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Carbacol/farmacología , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Potenciales de la Membrana , Modelos Biológicos , Agonistas Muscarínicos/farmacología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Proteína ORAI2/genética , Unión Proteica , Receptor Cross-Talk , Molécula de Interacción Estromal 1/agonistas , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 2/agonistas , Molécula de Interacción Estromal 2/genética , Factores de Tiempo
14.
Arterioscler Thromb Vasc Biol ; 41(1): 390-400, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176447

RESUMEN

OBJECTIVE: The platelet phenotype in certain patients and clinical contexts may differ from healthy conditions. We evaluated platelet activation through specific receptors in healthy men and women, comparing this to patients presenting with ST-segment-elevation myocardial infarction and non-ST-segment-elevation myocardial infarction. Approach and Results: We identified independent predictors of platelet activation through certain receptors and a murine MI model further explored these findings. Platelets from healthy women and female mice are more reactive through PARs (protease-activated receptors) compared with platelets from men and male mice. Multivariate regression analyses revealed male sex and non-ST-segment-elevation myocardial infarction as independent predictors of enhanced PAR1 activation in human platelets. Platelet PAR1 signaling decreased in women and increased in men during MI which was the opposite of what was observed during healthy conditions. Similarly, in mice, thrombin-mediated platelet activation was greater in healthy females compared with males, and lesser in females compared with males at the time of MI. CONCLUSIONS: Sex-specific signaling in platelets seems to be a cross-species phenomenon. The divergent platelet phenotype in males and females at the time of MI suggests a sex-specific antiplatelet drug regimen should be prospectively evaluated.


Asunto(s)
Plaquetas/metabolismo , Infarto del Miocardio sin Elevación del ST/sangre , Activación Plaquetaria , Receptor PAR-1/sangre , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Animales , Plaquetas/efectos de los fármacos , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fenotipo , Activación Plaquetaria/efectos de los fármacos , Factores Sexuales , Transducción de Señal , Trombina/farmacología
15.
Sci Signal ; 13(619)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071168

RESUMEN

Fluoride ions are highly reactive, and their incorporation in forming dental enamel at low concentrations promotes mineralization. In contrast, excessive fluoride intake causes dental fluorosis, visually recognizable enamel defects that can increase the risk of caries. To investigate the molecular bases of dental fluorosis, we analyzed the effects of fluoride exposure in enamel cells to assess its impact on Ca2+ signaling. Primary enamel cells and an enamel cell line (LS8) exposed to fluoride showed decreased internal Ca2+ stores and store-operated Ca2+ entry (SOCE). RNA-sequencing analysis revealed changes in gene expression suggestive of endoplasmic reticulum (ER) stress in fluoride-treated LS8 cells. Fluoride exposure did not alter Ca2+ homeostasis or increase the expression of ER stress-associated genes in HEK-293 cells. In enamel cells, fluoride exposure affected the functioning of the ER-localized Ca2+ channel IP3R and the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump during Ca2+ refilling of the ER. Fluoride negatively affected mitochondrial respiration, elicited mitochondrial membrane depolarization, and disrupted mitochondrial morphology. Together, these data provide a potential mechanism underlying dental fluorosis.


Asunto(s)
Calcio/metabolismo , Esmalte Dental/efectos de los fármacos , Fluoruros/farmacología , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Células Cultivadas , Esmalte Dental/citología , Esmalte Dental/metabolismo , Órgano del Esmalte/citología , Órgano del Esmalte/efectos de los fármacos , Órgano del Esmalte/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Fluorosis Dental/genética , Fluorosis Dental/metabolismo , Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo
16.
Cell Death Differ ; 26(12): 2682-2694, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30976095

RESUMEN

Bok (Bcl-2-related ovarian killer) is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, but the cellular role that Bok plays is controversial. Remarkably, endogenous Bok is constitutively bound to inositol 1,4,5-trisphosphate receptors (IP3Rs) and is stabilized by this interaction. Here we report that despite the strong association with IP3Rs, deletion of Bok expression by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease)-mediated gene editing does not alter calcium mobilization via IP3Rs or calcium influx into the mitochondria. Rather, Bok deletion significantly reduces mitochondrial fusion rate, resulting in mitochondrial fragmentation. This phenotype is reversed by exogenous wild-type Bok and by an IP3R binding-deficient Bok mutant, and may result from a decrease in mitochondrial motility. Bok deletion also enhances mitochondrial spare respiratory capacity and membrane potential. Finally, Bok does not play a major role in apoptotic signaling, since Bok deletion does not alter responsiveness to various apoptotic stimuli. Overall, despite binding to IP3Rs, Bok does not alter IP3R-mediated Ca2+ signaling, but is required to maintain normal mitochondrial fusion, morphology, and bioenergetics.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Señalización del Calcio , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados , Consumo de Oxígeno , Proteínas Proto-Oncogénicas c-bcl-2/deficiencia , Proteínas Proto-Oncogénicas c-bcl-2/genética
17.
Cell Mol Life Sci ; 76(19): 3843-3859, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30989245

RESUMEN

Bcl-2 proteins have emerged as critical regulators of intracellular Ca2+ dynamics by directly targeting and inhibiting the IP3 receptor (IP3R), a major intracellular Ca2+-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IP3R activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IP3R function provoked by low concentration of agonist or IP3, while fails to attenuate against high concentration of agonist or IP3. Surprisingly, Bcl-2 remained capable of inhibiting IP3R1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.a. 1380-1408) located in the ARM2 domain, part of the modulatory region. Using a plethora of computational, biochemical and biophysical methods, we demonstrate that Bcl-2 and more particularly its BH4 domain bind to the ligand-binding domain (LBD) of IP3R1. In line with this finding, the interaction between the LBD and Bcl-2 (or its BH4 domain) was sensitive to IP3 and adenophostin A, ligands of the IP3R. Vice versa, the BH4 domain of Bcl-2 counteracted the binding of IP3 to the LBD. Collectively, our work reveals a novel mechanism by which Bcl-2 influences IP3R activity at the level of the LBD. This allows for exquisite modulation of Bcl-2's inhibitory properties on IP3Rs that is tunable to the level of IP3 signaling in cells.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células COS , Células Cultivadas , Chlorocebus aethiops , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Dominios Proteicos , Proteínas Proto-Oncogénicas c-bcl-2/química , Eliminación de Secuencia
18.
J Biol Chem ; 293(34): 13112-13124, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29970616

RESUMEN

Fine-tuning of the activity of inositol 1,4,5-trisphosphate receptors (IP3R) by a diverse array of regulatory inputs results in intracellular Ca2+ signals with distinct characteristics. These events allow the activation of specific downstream effectors. We reported previously that region-specific proteolysis represents a novel regulatory event for type 1 IP3R (R1). Specifically, caspase-fragmented R1 display a marked increase in single-channel open probability. More importantly, the distinct characteristics of the Ca2+ signals elicited via fragmented R1 can activate alternate downstream effectors. In this report, we expand these studies to investigate whether all IP3R subtypes are regulated by proteolysis. We now show that type 2 and type 3 IP3R (R2 and R3, respectively) are proteolytically cleaved in rodent models of acute pancreatitis. Surprisingly, fragmented IP3R retained tetrameric architecture, remained embedded in endoplasmic reticulum membranes and were not functionally disabled. Proteolysis was associated with a marked attenuation of the frequency of Ca2+ signals in pancreatic lobules. Consistent with these data, expression of DNAs encoding complementary R2 and R3 peptides mimicking fragmented receptors at particular sites, resulted in a significant decrease in the frequency of agonist-stimulated Ca2+ oscillations. Further, proteolysis of R2 resulted in a marked decrease in single-channel open probability. Taken together, proteolytic fragmentation modulates R2 and R3 activity in a region-specific manner, and this event may contribute to the altered Ca2+ signals in pancreatic acinar cells during acute pancreatitis.


Asunto(s)
Señalización del Calcio , Modelos Animales de Enfermedad , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Pancreatitis/fisiopatología , Enfermedad Aguda , Animales , Receptores de Inositol 1,4,5-Trifosfato/genética , Activación del Canal Iónico , Masculino , Ratones , Ratones Endogámicos C57BL , Proteolisis , Ratas , Ratas Wistar
19.
J Biol Chem ; 292(28): 11714-11726, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28526746

RESUMEN

The inositol 1,4,5 trisphosphate receptor (IP3R) is an intracellular Ca2+ release channel expressed predominately on the membranes of the endoplasmic reticulum. IP3R1 can be cleaved by caspase or calpain into at least two receptor fragments. However, the functional consequences of receptor fragmentation are poorly understood. Our previous work has demonstrated that IP3R1 channels, formed following either enzymatic fragmentation or expression of the corresponding complementary polypeptide chains, retain tetrameric architecture and are still activated by IP3 binding despite the loss of peptide continuity. In this study, we demonstrate that region-specific receptor fragmentation modifies channel regulation. Specifically, the agonist-evoked temporal Ca2+ release profile and protein kinase A modulation of Ca2+ release are markedly altered. Moreover, we also demonstrate that activation of fragmented IP3R1 can result in a distinct functional outcome. Our work suggests that proteolysis of IP3R1 may represent a novel form of modulation of IP3R1 channel function and increases the repertoire of Ca2+ signals achievable through this channel.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Línea Celular , Pollos , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Cinética , Mutación , Técnicas de Placa-Clamp , Fragmentos de Péptidos/agonistas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Proteolisis , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Regulación hacia Arriba
20.
J Clin Invest ; 126(11): 4303-4318, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27721237

RESUMEN

Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release-activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel-deficient patients and mice with ectodermal tissue-specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice.


Asunto(s)
Señalización del Calcio/fisiología , Canales de Cloruro/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Glándulas Sudoríparas/metabolismo , Sudor/metabolismo , Animales , Anoctamina-1 , Acuaporina 5/genética , Acuaporina 5/metabolismo , Canales de Cloruro/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA