Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39257786

RESUMEN

Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.

2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373086

RESUMEN

Parkinson's disease (PD) is an increasingly common neurodegenerative movement disorder with contributing factors that are still largely unexplored and currently no effective intervention strategy. Epidemiological and pre-clinical studies support the close association between environmental toxicant exposure and PD incidence. Aflatoxin B1 (AFB1), a hazardous mycotoxin commonly present in food and environment, is alarmingly high in many areas of the world. Previous evidence suggests that chronic exposure to AFB1 leads to neurological disorders as well as cancer. However, whether and how aflatoxin B1 contributes to the pathogenesis of PD is poorly understood. Here, oral exposure to AFB1 is shown to induce neuroinflammation, trigger the α-synuclein pathology, and cause dopaminergic neurotoxicity. This was accompanied by the increased expression and enzymatic activity of soluble epoxide hydrolase (sEH) in the mouse brain. Importantly, genetic deletion or pharmacological inhibition of sEH alleviated the AFB1-induced neuroinflammation by reducing microglia activation and suppressing pro-inflammatory factors in the brain. Furthermore, blocking the action of sEH attenuated dopaminergic neuron dysfunction caused by AFB1 in vivo and in vitro. Together, our findings suggest a contributing role of AFB1 to PD etiology and highlight sEH as a potential pharmacological target for alleviating PD-related neuronal disorders caused by AFB1 exposure.


Asunto(s)
Enfermedades Neurodegenerativas , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Ratones , Animales , Aflatoxina B1/toxicidad , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Encéfalo/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36901999

RESUMEN

Aging, which is characterized by enhanced cell senescence and functional decline of tissues, is a major risk factor for many chronic diseases. Accumulating evidence shows that age-related dysfunction in the colon leads to disorders in multiple organs and systemic inflammation. However, the detailed pathological mechanisms and endogenous regulators underlying colon aging are still largely unknown. Here, we report that the expression and activity of the soluble epoxide hydrolase (sEH) enzyme are increased in the colon of aged mice. Importantly, genetic knockout of sEH attenuated the age-related upregulation of senescent markers p21, p16, Tp53, and ß-galactosidase in the colon. Moreover, sEH deficiency alleviated aging-associated endoplasmic reticulum (ER) stress in the colon by reducing both the upstream regulators Perk and Ire1 as well as the downstream pro-apoptotic effectors Chop and Gadd34. Furthermore, treatment with sEH-derived linoleic acid metabolites, dihydroxy-octadecenoic acids (DiHOMEs), decreased cell viability and increased ER stress in human colon CCD-18Co cells in vitro. Together, these results support that the sEH is a key regulator of the aging colon, which highlights its potential application as a therapeutic target for reducing or treating age-related diseases in the colon.


Asunto(s)
Senescencia Celular , Estrés del Retículo Endoplásmico , Epóxido Hidrolasas , Animales , Humanos , Ratones , Envejecimiento , Colon/metabolismo , Epóxido Hidrolasas/metabolismo , Inflamación , Ratones Endogámicos C57BL
4.
Ecotoxicol Environ Saf ; 249: 114417, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525946

RESUMEN

Aflatoxin B1 (AFB1) contamination in food and feed leads to severe global health problems. Acting as the frontier immunological barrier, the intestinal mucosa is constantly challenged by exposure to foodborne toxins such as AFB1 via contaminated diets, but the detailed toxic mechanism and endogenous regulators of AFB1 toxicity are still unclear. Here, we showed that AFB1 disrupted intestinal immune function by suppressing macrophages, especially M2 macrophages, and antimicrobial peptide-secreting Paneth cells. Using an oxylipinomics approach, we identified that AFB1 immunotoxicity is associated with decreased epoxy fatty acids, notably epoxyeicosatrienoic acids, and increased soluble epoxide hydrolase (sEH) levels in the intestine. Furthermore, sEH deficiency or inhibition rescued the AFB1-compromised intestinal immunity by restoring M2 macrophages as well as Paneth cells and their-derived lysozyme and α-defensin-3 in mice. Altogether, our study demonstrates that AFB1 exposure impairs intestinal immunity, at least in part, in a sEH-mediated way. Moreover, the present study supports the potential application of pharmacological intervention by inhibiting the sEH enzyme in alleviating intestinal immunotoxicity and associated complications caused by AFB1 global contamination.


Asunto(s)
Aflatoxina B1 , Epóxido Hidrolasas , Animales , Ratones , Aflatoxina B1/toxicidad , Dieta , Inmunidad , Intestinos
5.
Elife ; 112022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576241

RESUMEN

The voltage-gated sodium NaV1.7 channel plays a key role as a mediator of action potential propagation in C-fiber nociceptors and is an established molecular target for pain therapy. ProTx-II is a potent and moderately selective peptide toxin from tarantula venom that inhibits human NaV1.7 activation. Here we used available structural and experimental data to guide Rosetta design of potent and selective ProTx-II-based peptide inhibitors of human NaV1.7 channels. Functional testing of designed peptides using electrophysiology identified the PTx2-3127 and PTx2-3258 peptides with IC50s of 7 nM and 4 nM for hNaV1.7 and more than 1000-fold selectivity over human NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.8, and NaV1.9 channels. PTx2-3127 inhibits NaV1.7 currents in mouse and human sensory neurons and shows efficacy in rat models of chronic and thermal pain when administered intrathecally. Rationally designed peptide inhibitors of human NaV1.7 channels have transformative potential to define a new class of biologics to treat pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Dolor , Péptidos , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Humanos , Ratones , Ratas , Nociceptores , Dolor/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Diseño de Fármacos
6.
Front Pain Res (Lausanne) ; 3: 1100524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700145

RESUMEN

Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.

7.
ACS Omega ; 6(10): 7165-7174, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33748630

RESUMEN

Adrenic acid (AdA, 22:4) is an ω-6 polyunsaturated fatty acid (PUFA), derived from arachidonic acid. Like other PUFAs, it is metabolized by cytochrome P450s to a group of epoxy fatty acids (EpFAs), epoxydocosatrienoic acids (EDTs). EpFAs are lipid mediators with various beneficial bioactivities, including exertion of analgesia and reduction of endoplasmic reticulum (ER) stress, that are degraded to dihydroxy fatty acids by the soluble epoxide hydrolase (sEH). However, the biological characteristics and activities of EDTs are relatively unexplored, and, alongside dihydroxydocosatrienoic acids (DHDTs), they had not been detected in vivo. Herein, EDT and DHDT regioisomers were synthesized, purified, and used as standards for analysis with a selective and quantitative high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. Biological verification in AdA-rich tissues suggests that basal metabolite levels are highest in the liver, with 16,17-EDT concentrations consistently being the greatest across the analyzed tissues. Enzyme hydrolysis assessment revealed that EDTs are sEH substrates, with greatest relative rate preference for the 13,14-EDT regioisomer. Pretreatment with an EDT methyl ester regioisomer mixture significantly reduced the onset of tunicamycin-stimulated ER stress in human embryonic kidney cells. Finally, administration of the regioisomeric mixture effectively alleviated carrageenan-induced inflammatory pain in rats. This study indicates that EDTs and DHDTs are naturally occurring lipids, and EDTs could be another therapeutically relevant group of EpFAs.

8.
J Pain Res ; 14: 61-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33488116

RESUMEN

Chronic pain is a complicated condition which causes substantial physical, emotional, and financial impacts on individuals and society. However, due to high cost, lack of efficacy and safety problems, current treatments are insufficient. There is a clear unmet medical need for safe, nonaddictive and effective therapies in the management of pain. Epoxy-fatty acids (EpFAs), which are natural signaling molecules, play key roles in mediation of both inflammatory and neuropathic pain sensation. However, their molecular mechanisms of action remain largely unknown. Soluble epoxide hydrolase (sEH) rapidly converts EpFAs into less bioactive fatty acid diols in vivo; therefore, inhibition of sEH is an emerging therapeutic target to enhance the beneficial effect of natural EpFAs. In this review, we will discuss sEH inhibition as an analgesic strategy for pain management and the underlying molecular mechanisms.

9.
Front Pharmacol ; 12: 778470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975481

RESUMEN

The soluble epoxide hydrolase (sEH) enzyme is a major regulator of bioactive lipids. The enzyme is highly expressed in liver and kidney and modulates levels of endogenous epoxy-fatty acids, which have pleiotropic biological effects including limiting inflammation, neuroinflammation, and hypertension. It has been hypothesized that inhibiting sEH has beneficial effects on limiting obesity and metabolic disease as well. There is a body of literature published on these effects, but typically only male subjects have been included. Here, we investigate the role of sEH in both male and female mice and use a global sEH knockout mouse model to compare the effects of diet and diet-induced obesity. The results demonstrate that sEH activity in the liver is modulated by high-fat diets more in male than in female mice. In addition, we characterized the sEH activity in high fat content tissues and demonstrated the influence of diet on levels of bioactive epoxy-fatty acids. The sEH KO animals had generally increased epoxy-fatty acids compared to wild-type mice but gained less body weight on higher-fat diets. Generally, proinflammatory prostaglandins and triglycerides were also lower in livers of sEH KO mice fed HFD. Thus, sEH activity, prostaglandins, and triglycerides increase in male mice on high-fat diet but are all limited by sEH ablation. Additionally, these changes also occur in female mice though at a different magnitude and are also improved by knockout of the sEH enzyme.

10.
J Nat Prod ; 83(12): 3689-3697, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33320645

RESUMEN

Lepidium meyenii (maca), a plant indigenous to the Peruvian Andes, recently has been utilized globally for claimed health or recreational benefits. The search for natural products that inhibit soluble epoxide hydrolase (sEH), with therapeutically relevant potencies and concentrations, led to the present study on bioactive amide secondary metabolites found in L. meyenii, the macamides. Based on known and suspected macamides, 19 possible macamides were synthesized and characterized. The majority of these amides displayed excellent inhibitory potency (IC50 ≈ 20-300 nM) toward the recombinant mouse, rat, and human sEH. Quantitative analysis of commercial maca products revealed that certain products contain known macamides (1-5, 8-12) at therapeutically relevant total concentrations (≥3.29 mg/g of root), while the inhibitory potency of L. meyenii extracts directly correlates with the sum of concentration/IC50 ratios of macamides present. Considering both its in vitro efficacy and high abundance in commercial products, N-benzyl-linoleamide (4) was identified as a particularly relevant macamide that can be utilized for in vivo studies. Following oral administration in the rat, compound 4 not only displayed acceptable pharmacokinetic characteristics but effectively reduced lipopolysaccharide-induced inflammatory pain. Inhibition of sEH by macamides provides a plausible biological mechanism of action to account for several beneficial effects previously observed with L. meyenii treatments.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Inflamación/complicaciones , Ácidos Linoleicos/química , Dolor/prevención & control , Administración Oral , Analgesia , Animales , Humanos , Ácidos Linoleicos/administración & dosificación , Ácidos Linoleicos/farmacocinética , Ácidos Linoleicos/farmacología , Ratones , Dolor/etiología , Ratas
11.
Neurotherapeutics ; 17(3): 900-916, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32875445

RESUMEN

The role of lipids in pain signaling is well established and built on decades of knowledge about the pain and inflammation produced by prostaglandin and leukotriene metabolites of cyclooxygenase and lipoxygenase metabolism, respectively. The analgesic properties of other lipid metabolites are more recently coming to light. Lipid metabolites have been observed to act directly at ion channels and G protein-coupled receptors on nociceptive neurons as well as act indirectly at cellular membranes. Cytochrome P450 metabolism of specifically long-chain fatty acids forms epoxide metabolites, the epoxy-fatty acids (EpFA). The biological role of these metabolites has been found to mediate analgesia in several types of pain pathology. EpFA act through a variety of direct and indirect mechanisms to limit pain and inflammation including nuclear receptor agonism, limiting endoplasmic reticulum stress and blocking mitochondrial dysfunction. Small molecule inhibitors of the soluble epoxide hydrolase can stabilize the EpFA in vivo, and this approach has demonstrated relief in preclinical modeled pain pathology. Moreover, the ability to block neuroinflammation extends the potential benefit of targeting soluble epoxide hydrolase to maintain EpFA for neuroprotection in neurodegenerative disease.


Asunto(s)
Epóxido Hidrolasas/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos de la Membrana/metabolismo , Dolor/metabolismo , Animales , Epóxido Hidrolasas/administración & dosificación , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos de la Membrana/administración & dosificación , Dolor/tratamiento farmacológico
12.
Anal Chem ; 92(17): 11654-11663, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786492

RESUMEN

Enzyme-linked immunosorbent assays (ELISA) for the detection of soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of fatty acids and a biomarker, may increasingly represent an important diagnostic tool. However, there is a lack of ELISAs for mouse sEH quantification, thus resulting in a bottleneck in understanding the pathogenesis of many diseases related to sEH based on mouse models. In this work, nanobodies recognizing mouse sEH were obtained through rebiopanning against mouse sEH in the previous phage display library of human sEH. Later, we developed four ELISAs involving a combination of anti-mouse sEH polyclonal antibodies (pAbs) and nanobodies. It was found that the double antibodies worked as dual filters and had a huge impact on both the sensitivity and selectivity of sandwich immunoassays. The switch from anti-human sEH pAbs to anti-mouse sEH pAbs led to over a 100-fold increase in the sensitivity and a dramatic decrease of the limit of detection to a picogram per milliliter range in format B (pAb/biotin-VHH/streptavidin-poly-horseradish peroxidase). Moreover, we found that the four sandwich ELISAs might demonstrate excellent selectivities to mouse sEH, despite the antibodies alone showing significant cross-reactivity to the matrix, indicating the enhanced selectivity of double antibodies as dual filters. Eventually, for the first time, the ELISA (format B) was successfully used to measure the mouse sEH level in cancer cells with ultralow abundances. The ELISAs proposed here represent a sensitive tool for tracking sEH in various biological processes and also provide deep insights into developing sandwich immunoassays against various targets in terms of both the sensitivity and selectivity.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Epóxido Hidrolasas/metabolismo , Inmunoensayo/métodos , Anticuerpos de Dominio Único/metabolismo , Animales , Humanos , Ratones
13.
Brain Res ; 1728: 146573, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790682

RESUMEN

Effectively treating chronic pain remains a therapeutic challenge in the clinic. Recent evidence has shown the inhibition of the soluble epoxide hydrolase (sEH) to be an effective strategy to limit chronic pain in preclinical models, horses and companion animals. Determining the safety of sEH inhibition in addition to this demonstrated efficacy is a critical step to the further development of sEH inhibitors (sEHI) as analgesics. Here we describe a comparison of the sEHI TPPU with other first in class analgesics for human chronic pain. We assess the development of tolerance to the analgesia mediated by TPPU with extended use. We also assess for CNS effects by measuring changes in motor control and functioning. The sEHI are multimodal analgesics that have demonstrated potent efficacy against chronic pain. They have previously been tested and show no reward potential using operant methods. The results of the current experiments show that they lack motor function effects and also lack the development of tolerance with extended dosing.


Asunto(s)
Analgésicos/farmacología , Dolor Crónico/tratamiento farmacológico , Tolerancia a Medicamentos , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Piperidinas/farmacología , Analgésicos/uso terapéutico , Animales , Dolor Crónico/enzimología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/inducido químicamente , Neuropatías Diabéticas/inducido químicamente , Inhibidores Enzimáticos/uso terapéutico , Análisis de la Marcha , Masculino , Morfina/administración & dosificación , Compuestos de Fenilurea/uso terapéutico , Piperidinas/uso terapéutico , Pregabalina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Estreptozocina
14.
ACS Cent Sci ; 5(9): 1614-1624, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31572788

RESUMEN

The drug discovery and development process is greatly hampered by difficulties in translating in vitro potency to in vivo efficacy. Recent studies suggest that the long-neglected drug-target residence time parameter complements classical drug affinity parameters (K I, K d, IC50, or EC50) and is a better predictor of in vivo efficacy. Compounds with a long drug-target residence time are often more efficacious in vivo. The impact, however, of the drug-target residence time on in vivo efficacy remains controversial due to difficulties in experimentally determining the in vivo target occupancy during drug treatment. To tackle this problem, an in vivo displacement assay was developed using soluble epoxide hydrolase as a biological model. In this report, we experimentally demonstrated that drug-target residence time affects the duration of in vivo drug-target binding. In addition, the drug-target residence time plays an important role in modulating the rate of drug metabolism which also affects the efficacy of the drug.

15.
Front Pharmacol ; 10: 464, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143115

RESUMEN

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (TPPU) is a potent soluble epoxide hydrolase (sEH) inhibitor that is used extensively in research for modulating inflammation and protecting against hypertension, neuropathic pain, and neurodegeneration. Despite its wide use in various animal disease models, the metabolism of TPPU has not been well-studied. A broader understanding of its metabolism is critical for determining contributions of metabolites to the overall safety and effectiveness of TPPU. Herein, we describe the identification of TPPU metabolites using LC-MS/MS strategies. Four metabolites of TPPU (M1-M4) were identified from rat urine by a sensitive and specific LC-MS/MS method with double precursor ion scans. Their structures were further supported by LC-MS/MS comparison with synthesized standards. Metabolites M1 and M2 were formed from hydroxylation on a propionyl group of TPPU; M3 was formed by amide hydrolysis of the 1-propionylpiperdinyl group on TPPU; and M4 was formed by further oxidation of the hydroxylated metabolite M2. Interestingly, the predicted α-keto amide metabolite and 4-(trifluoromethoxy)aniline (metabolite from urea cleavage) were not detected by the LC-MRM-MS method. This indicates that if formed, the two potential metabolites represent <0.01% of TPPU metabolism. Species differences in the formation of these four identified metabolites was assessed using liver S9 fractions from dog, monkey, rat, mouse, and human. M1, M2, and M3 were generated in liver S9 fractions from all species, and higher amounts of M3 were generated in monkey S9 fractions compared to other species. In addition, rat and human S9 metabolism showed the highest species similarity based on the quantities of each metabolite. The presence of all four metabolites were confirmed in vivo in rats over 72-h post single oral dose of TPPU. Urine and feces were major routes for TPPU excretion. M1, M4 and parent drug were detected as major substances, and M2 and M3 were minor substances. In blood, M1 accounted for ~9.6% of the total TPPU-related exposure, while metabolites M2, M3, and M4 accounted for <0.4%. All four metabolites were potent inhibitors of human sEH but were less potent than the parent TPPU. In conclusion, TPPU is metabolized via oxidation and amide hydrolysis without apparent breakdown of the urea. The aniline metabolites were not observed either in vitro or in vivo. Our findings increase the confidence in the ability to translate preclinical PK of TPPU in rats to humans and facilitates the potential clinical development of TPPU and other sEH inhibitors.

16.
Artículo en Inglés | MEDLINE | ID: mdl-30593866

RESUMEN

Over the last two decades polypharmacology has emerged as a new paradigm in drug discovery, even though developing drugs with high potency and selectivity toward a single biological target is still a major strategy. Often, targeting only a single enzyme or receptor shows lack of efficacy. High levels of inhibitor of a single target also can lead to adverse side effects. A second target may offer additive or synergistic effects to affecting the first target thereby reducing on- and off-target side effects. Therefore, drugs that inhibit multiple targets may offer a great potential for increased efficacy and reduced the adverse effects. In this review we summarize recent findings of rationally designed multitarget compounds that are aimed to improve efficacy and safety profiles compared to those that target a single enzyme or receptor. We focus on dual inhibitors/modulators that target the soluble epoxide hydrolase (sEH) as a common part of their design to take advantage of the beneficial effects of sEH inhibition.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/química , Animales , Humanos , Solubilidad
17.
ACS Omega ; 3(10): 14076-14086, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411058

RESUMEN

Fatty acid amide hydrolase (FAAH) is responsible for regulating concentrations of the endocannabinoid arachidonoyl ethanolamide. Multiple FAAH inhibitors have been developed for clinical trials and have failed to demonstrate efficacy at treating pain, despite promising preclinical data. One approach toward increasing the efficacy of FAAH inhibitors is to concurrently inhibit other targets responsible for regulating pain. Here, we designed dual inhibitors targeting the enzymes FAAH and soluble epoxide hydrolase (sEH), which are targets previously shown to synergize at reducing inflammatory and neuropathic pain. Exploration of the sEH/FAAH inhibitor structure-activity relationship started with PF-750, a FAAH inhibitor (IC50 = 19 nM) that weakly inhibited sEH (IC50 = 640 nM). Potency was optimized resulting in an inhibitor with improved potency on both targets (11, sEH IC50 = 5 nM, FAAH IC50 = 8 nM). This inhibitor demonstrated good target selectivity, pharmacokinetic properties (AUC = 1200 h nM, t 1/2 = 4.9 h in mice), and in vivo target engagement.

19.
J Med Chem ; 61(8): 3541-3550, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29614224

RESUMEN

Inspired by previously discovered enhanced analgesic efficacy between soluble epoxide hydrolase (sEH) and phosphodiesterase 4 (PDE4) inhibitors, we designed, synthesized and characterized 21 novel sEH/PDE4 dual inhibitors. The best of these displayed good efficacy in in vitro assays. Further pharmacokinetic studies of a subset of four selected compounds led to the identification of a bioavailable dual inhibitor N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA). In a lipopolysaccharide induced inflammatory pain rat model, MPPA rapidly increased in the blood ( Tmax = 30 min; Cmax = 460 nM) after oral administration of 3 mg/kg and reduced inflammatory pain with rapid onset of action correlating with blood levels over a time course of 4 h. Additionally, MPPA does not alter self-motivated exploration of rats with inflammatory pain or the withdrawal latency in control rats.


Asunto(s)
Analgésicos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Dolor/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Piperidinas/uso terapéutico , Administración Oral , Analgésicos/administración & dosificación , Analgésicos/síntesis química , Analgésicos/farmacocinética , Animales , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/complicaciones , Lipopolisacáridos , Masculino , Estructura Molecular , Dolor/etiología , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Inhibidores de Fosfodiesterasa 4/síntesis química , Inhibidores de Fosfodiesterasa 4/farmacocinética , Piperidinas/administración & dosificación , Piperidinas/síntesis química , Piperidinas/farmacocinética , Ratas Sprague-Dawley
20.
Pharmacol Ther ; 180: 62-76, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28642117

RESUMEN

Eicosanoids are biologically active lipid signaling molecules derived from polyunsaturated fatty acids. Many of the actions of eicosanoid metabolites formed by cyclooxygenase and lipoxygenase enzymes have been characterized, however, the epoxy-fatty acids (EpFAs) formed by cytochrome P450 enzymes are newly described by comparison. The EpFA metabolites modulate a diverse set of physiologic functions that include inflammation and nociception among others. Regulation of EpFAs occurs primarily via release, biosynthesis and enzymatic transformation by the soluble epoxide hydrolase (sEH). Targeting sEH with small molecule inhibitors has enabled observation of the biological activity of the EpFAs in vivo in animal models, greatly contributing to the overall understanding of their role in the inflammatory response. Their role in modulating inflammation has been demonstrated in disease models including cardiovascular pathology and inflammatory pain, but extends to neuroinflammation and neuroinflammatory disease. Moreover, while EpFAs demonstrate activity against inflammatory pain, interestingly, this action extends to blocking chronic neuropathic pain as well. This review outlines the role of modulating sEH and the biological action of EpFAs in models of pain and inflammatory diseases.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Dolor/tratamiento farmacológico , Animales , Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Humanos , Inflamación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Dolor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA