Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurochem Res ; 49(1): 66-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37603214

RESUMEN

The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Astrocitos , Ratas , Animales , Disulfuro de Glutatión/metabolismo , Astrocitos/metabolismo , Ritonavir/farmacología , Ritonavir/metabolismo , Antivirales/metabolismo , Antivirales/farmacología , Células Cultivadas , Glutatión/metabolismo , Transporte Biológico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mamíferos/metabolismo
3.
Int Rev Immunol ; 42(2): 113-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34494938

RESUMEN

Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.


Asunto(s)
Enfermedades Transmisibles , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Animales , Humanos , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Ácidos Siálicos , Inmunoglobulinas
4.
Nanoscale Adv ; 4(24): 5355-5364, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36540112

RESUMEN

Interactions between sialic acid (Sia) and sialic acid-binding immunoglobulin-like lectins (siglecs) regulate the immune system, with aberrations contributing to pathologies such as autoimmunity, infectious disease and cancer. Over the last decade, several multivalent Sia ligands have been synthesized to modulate the Sia-binding affinity of proteins/lectins. Here, we report a novel class of multivalent siglec probes through the decoration of α(2,6)-sialyllactose ligands on inherently fluorescent carbon dots (CD). We show that the preference of α(2,3)-linked Sia for siglec-1 can be altered by increasing the multivalence of Sia ligands present on the CD, and that a locally high glycan concentration can have a direct effect on linkage specificity. Additionally, micromolar (IC50 ∼ 70 µM) interaction of α(2,6)-sialyllactose-CD (6-CD) with siglec-2 (CD22) revealed it was capable of generating a significant cytotoxic effect on Burkitt's Lymphoma (BL) Daudi B cells. This phenonomen was attributed to 6-CD's ability to form trans interactions with CD22 on masked BL Daudi cells as a direct result of clustering of the Sia moiety on the CD surface. Overall, our glycoengineered carbon dots represent a novel high affinity molecular probe with multiple applications in sialoglycoscience and medicine.

5.
J Biol Chem ; 298(10): 102403, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995210

RESUMEN

Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme-substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure-function relationship potentially inherent in several members of the TS enzyme family.


Asunto(s)
Glicoproteínas , Neuraminidasa , Trypanosoma congolense , Animales , Cricetinae , Células CHO , Cricetulus , Glicosilación , Neuraminidasa/metabolismo , Polisacáridos/metabolismo , Trypanosoma congolense/enzimología , Glicoproteínas/metabolismo
6.
PLoS Negl Trop Dis ; 16(2): e0009585, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130274

RESUMEN

Trans-sialidases (TS) represent a multi-gene family of unusual enzymes, which catalyse the transfer of terminal sialic acids (Sia) from sialoglycoconjugates to terminal galactose or N-acetylgalactosamine residues of oligosaccharides without the requirement of CMP-Neu5Ac, the activated Sia used by typical sialyltransferases. Enzymes comprise a N-terminal catalytic domain (CD) followed by a lectin-like domain (LD). Most work on trypanosomal TS has been done on enzymatic activities focusing on the CD of TS from Trypanosoma cruzi (causing Chagas disease in Latin America), subspecies of Trypanosoma brucei, (causing human sleeping sickness in Africa) and Trypanosoma congolense (causing African Animal Trypanosomosis in livestock). Previously, we demonstrated that T. congolense TS (TconTS)-LD binds to several carbohydrates, such as 1,4-ß-mannotriose. In this study we investigated the influence of TconTS3-LD on Sia transfer efficiency of TconTS1a-CD by swapping domains. in silico analysis on structure models of TconTS enzymes revealed the potential of domain swaps between TconTS1a and TconTS3 without structural disruptions of the enzymes overall topologies. Recombinant domain swapped TconTS1a/TS3 showed clear Sia transfer activity, when using fetuin and lactose as Sia donor and acceptor substrates, respectively. While Sia transfer activity remained unchanged from the level of TconTS1a, hydrolytic release of free Neu5Ac as a side product was suppressed resulting in increased transfer efficiency. Presence of 1,4-ß-mannotriose during TS reactions modulates enzyme activities enhancing transfer efficiency possibly due to occupation of the binding site in TconTS1a-LD. Interestingly this effect was in the same range as that observed when swapping TconTS1a-CD and TconTS3-LD. In summary, this study demonstrate the proof-of-principle for swapping CDs and LDs of TconTS and that TconTS3-LD influences enzymatic activity of TconTS1a-CD providing evidence that LDs play pivotal roles in modulating activities and biological functions of TconTS and possibly other TS.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Neuraminidasa/química , Neuraminidasa/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma congolense/enzimología , Acetilgalactosamina/metabolismo , Sitios de Unión , Catálisis , Galactosa/metabolismo , Glicoproteínas/genética , Neuraminidasa/genética , Oligosacáridos/metabolismo , Proteínas Protozoarias/genética , Ácidos Siálicos/metabolismo , Trypanosoma congolense/química , Trypanosoma congolense/genética
7.
Nanoscale ; 12(36): 18938-18949, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32914159

RESUMEN

In this study, we present Janus nanoparticles that are designed for attaching to a eukaryotic cell surface with minimal cell uptake. This contrasts the rapid uptake via various endocytosis pathways that non-passivated isotropic particles usually encounter. Firmly attaching nanoparticles onto cell surfaces for extended periods of time can be a powerful new strategy to employ functional properties of nanoparticles for non-invasive interrogation and manipulation of biological systems. To this end, we synthesized rhodamine-doped silica (SiO2) nanoparticles functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) on one hemisphere of the nanoparticle surface and high-molecular-weight long-chain poly(ethylene glycol) on the other one using the wax-Pickering emulsion technique. Nanoparticle localization was studied with NIH 3T3 rat fibroblasts in vitro. In these studies, the Janus nanoparticles adhered to the cell surface and, in contrast to isotropic control particles, only negligible uptake into the cells was observed, even after 24 h of incubation. In order to characterize the potential endocytosis pathway involved in the uptake of the Janus nanoparticles in more detail, fibroblasts and nanoparticles were incubated in the presence or absence of different endocytosis inhibitors. Our findings indicate that the Janus particles are not affected by caveolae- and receptor-mediated endocytosis and the prolonged attachment of the Janus nanoparticles is most likely the result of an incomplete macropinocytosis process. Consequently, by design, these Janus nanoparticles have the potential to firmly anchor onto cell surfaces for extended periods of time and might be utilized in various biotechnological and biomedical applications like cell surface tagging, magnetic manipulation of the cell membrane or non-invasive drug and gene delivery.


Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Animales , Membrana Celular , Endocitosis , Polietilenglicoles , Ratas , Dióxido de Silicio
8.
Sci Rep ; 6: 36012, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808110

RESUMEN

Siglec-2 undergoes constitutive endocytosis and is a drug target for autoimmune diseases and B cell-derived malignancies, including hairy cell leukaemia, marginal zone lymphoma, chronic lymphocytic leukaemia and non-Hodgkin's lymphoma (NHL). An alternative to current antibody-based therapies is the use of liposomal nanoparticles loaded with cytotoxic drugs and decorated with Siglec-2 ligands. We have recently designed the first Siglec-2 ligands (9-biphenylcarboxamido-4-meta-nitrophenyl-carboxamido-Neu5Acα2Me, 9-BPC-4-mNPC-Neu5Acα2Me) with simultaneous modifications at C-4 and C-9 position. In the current study we have used Saturation Transfer Difference (STD) NMR spectroscopy to monitor the binding of 9-BPC-4-mNPC-Neu5Acα2Me to Siglec-2 present on intact Burkitt's lymphoma Daudi cells. Pre-treatment of cells with periodate resulted in significantly higher STD NMR signal intensities for 9-BPC-4-mNPC-Neu5Acα2Me as the cells were more susceptible to ligand binding because cis-binding on the cell surface was removed. Quantification of STD NMR effects led to a cell-derived binding epitope of 9-BPC-4-mNPC-Neu5Acα2Me that facilitated the design and synthesis of C-2, C-3, C-4 and C-9 tetra-substituted Siglec-2 ligands showing an 88-fold higher affinity compared to 9-BPC-Neu5Acα2Me. This is the first time a NMR-based binding study of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma Daudi cells has been described that might open new avenues in developing tailored therapeutics and personalised medicine.


Asunto(s)
Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Espectroscopía de Resonancia Magnética , Lectina 2 Similar a Ig de Unión al Ácido Siálico/química , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Línea Celular Tumoral , Epítopos/metabolismo , Citometría de Flujo , Células HEK293 , Humanos , Ligandos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácido Peryódico/metabolismo , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Transfección
9.
Biol Chem ; 397(5): 417-36, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26845719

RESUMEN

Hepatoma-derived growth factor (HDGF) is involved in diverse, apparently unrelated processes, such as cell proliferation, apoptosis, DNA-repair, transcriptional control, ribosome biogenesis and cell migration. Most of the interactions of HDGF with diverse molecules has been assigned to the hath region of HDGF. In this study we describe two previously unknown HDGF isoforms, HDGF-B and HDGF-C, generated via alternative splicing with structurally unrelated N-terminal regions of their hath region, which is clearly different from the well described isoform, HDGF-A. In silico modeling revealed striking differences near the PHWP motif, an essential part of the binding site for glycosaminoglycans and DNA/RNA. This observation prompted the hypothesis that these isoforms would have distinct interaction patterns with correspondingly diverse roles on cellular processes. Indeed, we discovered specific associations of HDGF-B and HDGF-C with cytoskeleton elements, such as tubulin and dynein, suggesting previously unknown functions of HDGF in retrograde transport, site directed localization and/or cytoskeleton organization. In contrast, the main isoform HDGF-A does not interact directly with the cytoskeleton, but via RNA with messenger ribonucleoprotein (mRNP) complexes. In summary, the discovery of HDGF splice variants with their discrete binding activities and subcellular distributions opened new avenues for understanding its biological function and importance.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Línea Celular , Proliferación Celular , Chlorocebus aethiops , Dineínas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Modelos Moleculares , Datos de Secuencia Molecular , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/metabolismo
10.
PLoS Negl Trop Dis ; 9(10): e0004120, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26474304

RESUMEN

Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented.


Asunto(s)
Carbohidratos/química , Glicoproteínas/química , Lectinas/química , Neuraminidasa/química , Trypanosoma congolense/enzimología , Sitios de Unión , Espectroscopía de Resonancia Magnética , Manosa/química , Estructura Terciaria de Proteína
12.
PLoS Negl Trop Dis ; 7(12): e2549, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24340108

RESUMEN

Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active trans-sialidases, TconTS2, TconTS3 and TconTS4, and three trans-sialidase like genes in Trypanosoma congolense. At least TconTS1, TconTS2 and TconTS4 are found in the bloodstream of infected animals. We have characterised the enzymatic properties of recombinant proteins expressed in eukaryotic fibroblasts using fetuin as model blood glycoprotein donor substrate. One of the recombinant trans-sialidases, TconTS2, had the highest specific activity reported thus far with very low sialidase activity. The active trans-sialidases share all the amino acids critical for the catalytic reaction with few variations in the predicted binding site for the leaving or acceptor glycan. However, these differences cannot explain the orders of magnitudes between their transfer activities, which must be due to other unidentified structural features of the proteins or substrates selectivity. Interestingly, the phylogenetic relationships between the lectin domains correlate with their specific trans-sialylation activities. This raises the question whether and how the lectin domains regulate the trans-sialidase reaction. The identification and enzymatic characterisation of the trans-sialidase family in T. congolense will contribute significantly towards the understanding of the roles of these enzymes in the pathogenesis of Animal African Trypanosomiasis.


Asunto(s)
Glicoproteínas/metabolismo , Neuraminidasa/metabolismo , Trypanosoma congolense/enzimología , Secuencia de Aminoácidos , Clonación Molecular , ADN Protozoario/química , ADN Protozoario/genética , Fetuínas/metabolismo , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Cinética , Datos de Secuencia Molecular , Neuraminidasa/genética , Neuraminidasa/aislamiento & purificación , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Trypanosoma congolense/genética
14.
BMC Biochem ; 12: 39, 2011 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-21801439

RESUMEN

BACKGROUND: Animal African trypanosomiasis, sleeping sickness in humans and Nagana in cattle, is a resurgent disease in Africa caused by Trypanosoma parasites. Trans-sialidases expressed by trypanosomes play an important role in the infection cycle of insects and mammals. Whereas trans-sialidases of other trypanosomes like the American T. cruzi are well investigated, relatively little research has been done on these enzymes of T. congolense. RESULTS: Based on a partial sequence and an open reading frame in the WTSI database, DNA sequences encoding for eleven T. congolense trans-sialidase 1 variants with 96.3% overall amino acid identity were amplified. Trans-sialidase 1 variants were expressed as recombinant proteins, isolated and assayed for trans-sialylation activity. The purified proteins produced α2,3-sialyllactose from lactose by desialylating fetuin, clearly demonstrating their trans-sialidase activity. Using an HPLC-based assay, substrate specificities and kinetic parameters of two variants were characterized in detail indicating differences in substrate specificities for lactose, fetuin and synthetic substrates. Both enzymes were able to sialylate asialofetuin to an extent, which was sufficient to reconstitute binding sites for Siglec-4. A mass spectrometric analysis of the sialylation pattern of glycopeptides from fetuin revealed clear but generally similar changes in the sialylation pattern of the N-glycans on fetuin catalyzed by the trans-sialidases investigated. CONCLUSIONS: The identification and characterization of a trans-sialidase gene family of the African parasite T. congolense has opened new perspectives for investigating the biological role of these enzymes in Nagana and sleeping sickness. Based on this study it will be interesting to address the expression pattern of these genes and their activities in the different stages of the parasite in its infection cycle. Furthermore, these trans-sialidases have the biotechnological potential to be used for enzymatic modification of sialylated glycoconjugates.


Asunto(s)
Variación Genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Neuraminidasa/química , Neuraminidasa/metabolismo , Trypanosoma congolense/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Glicopéptidos/metabolismo , Glicoproteínas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Neuraminidasa/genética , Conformación Proteica , Trypanosoma cruzi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA